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Chapter 1

Introduction

1.1 Strong Form and Variational Form

The finite element method is a scheme for the numerical solution of partial differential equations.
In this chapter, we introduce the basic concepts for elliptic problems in the frame of the Riesz
theorem. To that end, we consider the most standard example, namely the Poisson equation with
mixed Dirichlet-Neumann boundary conditions. We aim to solve

—Au=f in Q,
u=0 onlIp, (1.1)
Ou/on =¢ on Iy,

which is said to be the strong form of the boundary value problem. Here, 2 denotes a domain
in R? d = 2,3. The boundary I' := 9 is split into the Dirichlet boundary I'p and the Neumann
boundary I'y, respectively. To be more precise, we assume that I'p and I'y are (relatively) open
subsets of I' with Tp NIy = ® and I' = T'p UT'y. The source term f : © — R as well as the
Neumann data ¢ : 'y — R are given, and u : £ — R is the unknown solution. Moreover,

denotes the Laplace operator, which is defined in the classical sense for a function u € C?(Q), where
CHQ) = {w|g |w e CFRY}. If u € C*(Q) solves (1.1), u is said to be a strong solution of the
mlxed boundary value problem

Throughout the lecture, we shall assume that  is a Lipschitz domain in R?, i.e.,

‘ X

(1.2)

Q’)
QI\D

e ) is a bounded, open, and connected subset of R,
e () is locally on one side of I,
e I can locally be parametrized by Lipschitz continuous functions.

An important consequence of this assumption is the validity of the integration by parts formula

/a—x]vdx—l—/ua—xjdw—/ruvnjds for all u,v € CH(Q), (1.3)
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where n; denotes the j-th component of the outer normal vector of {2 on I' and where ds denotes
the surface measure on I'. For a precise definition and details, we refer e.g., to [MCL]

Let u € C?(Q) be a strong solution of (1.1) and v € Cl = {w e C'(Q ‘w\pD = 0}.
Multiplication of —Awu = f by v, integration over €2, and 1ntegrat10n by parts yleld that

0%u a du v du
/vadw——/(Au)vdm-—Z/ﬂaxzvdx—;[ Q%j%jdw—éavnjds}.

Jj=1

With z -y = Z =1 ZjYj the usual scalar product in R?, we obtain the first Green formula

/fvdx—/Vu Vvdw—/—vds (1.4)

where we have used Vu-n = du/dn. Together with v|r, =0 and I'y = I'\T'p, we may plug-in the
Neumann data to see that

/fvdx—/Vu Vvdw—/ —vds—/Vu-Vvdx—/ ovds.
ry 0 Q Iy

Altogether we thus have proven the following proposition:

Proposition 1.1. Let u € C?(2) solve the strong form (1.1). Then, it holds that
/ Vu-Vodr = / fodx + pvds for allv € CH(Q), (1.5)
) Q Ty

which is the variational form of the boundary value problem (1.1). |

This proposition gives a necessary condition for a function u to solve the strong form (1.1).
We stress that any strong solution belongs to Cb(ﬁ) and that the variational form (1.5) can be
understood for u € C}(Q). This leads to a symmetric variational formulation: Find u € C}(Q)
such that (1.5) holds.

Ezxercise 1. Prove the following well-known integral formulae:

e For f € C1(Q)?, let div f := Z;‘l:1 ngj_ denote the divergence operators. Then, there
holds the Gauss divergence theorem

/ div fdx = / f-nds forall f e CH Q)% (1.6)
Q r
e Besides the first Green formula, there holds the second Green formula

/( Au vdm—{—/—vds-/u(—Av)d:ﬂ%—/u@ds for all u,v € C*(Q). (1.7)
Q Q r on

Both are easily obtained from the integration by parts formula. O
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1.2 Solvability of Variational Form

To look for solutions of the weak form (1.5), we will employ the following Riesz theorem.

Theorem 1.2 (Riesz). For a Hilbert space H (over R), the mapping
Iy:H— H*, Ig(u):=(u;)g (1.8)
is linear, isometric, and bijective, i.e., for any F' € H* there is a unique u € H such that
(us;v)g =F(v) forallve H. (1.9)

Moreover, it holds that ||ul|g = || F|

H* - |

First, we observe that the left-hand side
(u;v):= / Vu - Voudz
Q

of the variational form (1.5) defines a scalar product on C}(f2), provided the Dirichlet boundary
I'p is nontrivial: Clearly, (u ; v) is a symmetric bilinear form on C}(2). It thus only remains to
prove definiteness. Note that 0 = (u ; u) = ||Vul[3, @ implies Vu = 0, whence u is constant in (.
Together with u|r,, = 0, this proves u = 0. Moreover, the right-hand side

F(v) ::/vadx+ g pvds

defines a linear functional on CL () which is continuous with respect to the induced norm ||v| :=
(v ; 1))1/ 2. We prove this claim only in the special situation I' = I'p and postpone the abstract
proof to a subsequent section.

Lemma 1.3 (Friedrichs’ inequality). Suppose that Q = [a,b] x [¢,d] C R? and Tp = 99.
Then, it holds that ||v| 12(q) < diam(Q2) [[Vv|12q) for all v € CL(Q).

Proof. For x = (x1,x2) € €, it holds that v(z1,c¢) = 0. Therefore, the fundamental theorem of
calculus yields that

v(x) = /1’2 Orv (1, t)dt.

The Holder inequality yields that

2 1/2
lo(z)] < ]d—c]1/2</ \82v(x1,t)]2dt) ?

[
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Integration over () gives

x2
ol = [ @B dz<la—c [ [" st P rds
Q QJe

d b rxo
:\d—c\/// |Opv (1, t)|* dt dzy dao

d
<ld—c| [ 0o doo
= |d — ¢|*[|020]|72 -
This results in [|v||f2(q) < |d — | |02v]|2(q) < diam(Q) V|| r2(q)- [

According to the Holder and the Friedrichs inequality, we obtain that

[F)| < [ fllz2@llvllr2@) < diam(Q)[| f[| 2@ Vol L2(0) = diam(Q)[[ ]| 2@ llv]]-

Therefore, the linear functional I is continuous with respect to || - || := [|[V(-)||z2(q) with operator
norm [|F|l. < diam(Q)| |l 2. If CH(Q) associated with the norm || - || were a Hilbert space, the
Riesz theorem would therefore imply the unique solvability of the variational form (1.5). However,
C'll) (Q) is not complete and therefore the Riesz theorem does not apply.

The remedy is to consider the (unique) completion of C'}(€2) with respect to || - ||. This leads to
a so-called Sobolev space H})(Q), which is —by definition— complete and hence a Hilbert space.
Density arguments then lead to an extended variational form: Find u € H},(€2) such that

/Vu-Vvd:E = / fvd:n—l—/ pvds for all v € HH(Q), (1.10)
Q Q I'n

which is the weak form of the boundary value problem (1.1). Now, the Riesz theorem applies and
proves the unique existence of a weak solution u € H})(Q) of (1.10). Later on, we are going to
show that

e cach strong solution u € C%(Q2) of (1.1) belongs to H}(£2) and is also the unique weak solution
of (1.10).

e provided the weak solution u € H},(Q) is smooth, i.e., u € C*(Q), the weak solution also
solves the strong form (1.1).

In this sense, the strong form (1.1) and the weak form (1.10) are equivalent.

1.3 Finite Element Method

The finite element method for (1.10) essentially consists of replacing the (infinite dimensional)
Sobolev space H}(£2) by a finite dimensional subspace X, C H1,(€2): Find uy, € X, such that

/ Vuy, - Vo, de = / Sfopdx + ovp, ds for all v, € X,. (1.11)
Q Q I'n
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This problem is equivalent to the solution of a system of linear equations Ax = b, where the system
matrix A is symmetric and positive definite. Of course, the question of convergence depends on
the choice of X},. Thus, there remain some topics for mathematical discussions later on.

The finite element method is a special Galerkin scheme. In this section, we collect the most
simple properties of Galerkin schemes. Throughout, H is a (real) Hilbert space, and (- ; -) is an
equivalent scalar product on H, i.e., there are constants «, 3 > 0 such that

allvflg < Jloll < Bllvllg  for all v € H, (1.12)
where [[v]| :== (v ; v)*/? denotes the induced norm. We stress that (- ;-) and || - || are often called
energy scalar product and energy norm, respectively (see also Exercise 5).

Remark. In the following, we state all results with respect to the norm || - ||z, which involves
the constants «, 8 > 0. Analogously, one may state the results with respect to the energy norm
Il -l =1 - ||z, which corresponds to o = 8 = 1. O

For given F' € H*, the Riesz theorem proves the existence and uniqueness of a solution u € H
of

(u;v) =F(v) forallveH, (1.13)
for what we use the short-hand notation
(u;)=FeH" (1.14)

to implicitly indicate that this equation holds (pointwise) for all v € H. Now, the Galerkin method
simply consists in replacing the continuous space H by some finite dimensional subspace: Let X},
be a finite-dimensional (and hence closed) subspace of H. Since the Riesz theorem applies to the
Hilbert space X}, as well, there is a unique Galerkin solution uy := Gpu € X}, such that

(Gpu;-) = F € X7. (1.15)
For u € H and the corresponding functional (u ; -) € H*, this defines the Galerkin projection
Gy : H— X, where Gpu € X, solves  (Gpu ;) = (u;-) € Xj. (1.16)
Note that Gpu € X}, is characterized by the Galerkin orthogonality
(u—Gpu;vp) =0 for all v, € Xp,. (1.17)

Before we proceed with the theoretical analysis of Galerkin schemes, we treat an implementational
issue. The following theorem is the fundamental observation: Usually, only the scalar product
(- ;-) and the right-hand side F' € H* are known, while the exact solution u € H of (1.13) is
unknown. Then, the Galerkin solution Gpu € X} can be computed by solving a linear system of
equations — without knowledge of wu.

Theorem 1.4. Let {¢1,...,6n} be a basis of Xj,. We define the Galerkin matriz A € RN*N
and the vector b € RV by

Aji = (¢r; ¢5) and bj = F(¢;). (1.18)
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Then, A is symmetric and positive definite and, in particular, a reqular matriz. Moreover,
there holds Gpu = Z;V:1 z;p;j, where the vector x € RY solves Az = b.

Proof. 1. step. Symmetry of A clearly follows from the symmetry of (- ; -).
2. step. For any z € RY and v, := Z;VZI x;¢;, it holds that

N
lonll® = (on s on) = Y wjailg; s du) = 2 - Az

Jvkzl

This proves Az -z > 0 for all x # 0. By definition, A is positive definite and hence regular.

3. step. Determine Galerkin solution: Let x € R™ be the unique solution of the linear Galerkin
system Ax = b. We use the basis representation G,u = Zjvzl y;¢; of the Galerkin solution with
some coefficient vector y € R™. By use of the linearity of (- ; -), equation (1.15) becomes

N
b = F(ér) = (Gru; ¢p) = Zyj«(bj s ok) = (Ay), forallk=1,... N.
=

Therefore, the coefficient vector y € RY satisfies Ay = b. This proves z = y, i.e., we obtain G,u
by solving Az = b. |

Remark. We just remark that Theorem 1.4 can be applied for any orthogonal-type projection,
e.g., the L?-orthogonal projection onto a discrete space. O

We now proceed with the abstract analysis of Galerkin schemes. The following two lemmata
provide elementary properties of the Galerkin projection. The first lemma proves stability of the
method with respect to changes of the right-hand side F.

Lemma 1.5. The Galerkin projection Gy, is a linear and continuous projection onto Xy with
IGrullg < g llullg  for allu € H, (1.19)

where a,, B > 0 are the norm equivalence constants from (1.12). Moreover, Gy, is the orthogonal
projection onto Xy, with respect to the energy scalar product (- ; -).

Proof. For up € Xj, the Galerkin orthogonality (1.17) implies Gjpup = up. Therefore Gy, is a
projection onto Xj. Also the linearity of Gy, follows from the Galerkin orthogonality (1.17). To see
the continuity of Gy, it remains to estimate the operator norm: For v € H holds

IGhull® = (Ghu ; Gru) = (u ; Gru) < [lulllGnull,
whence [|Gpul| < [lu| and
al|Grullr < ||Grull < flull < Bllulla,

where we have used the norm equivalence (1.12) on H as well as the Cauchy inequality for the
scalar product (- ; -). This proves that ||Gpul|lg < (a/8)||u||z and thus continuity of Gp. Finally,

6
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we remark that the unique orthogonal projection with respect to (- ; -), is characterized by the
orthogonality relation (1.17). [

The following Céa lemma states that the Galerkin error ||u — Gpul|g is quasi-optimal, i.e.,
it behaves like the best approximation error up to multiplicative constants, which depend only on
the continuous setting but not on Xj.

Lemma 1.6 (Céa). The Galerkin error is quasi-optimal, i.e.,
lu — Grul|lg < p min |u—vpllg  for all u € H, (1.20)
o vp,eXp

where o, 5 > 0 are the norm equivalence constants from (1.12). With respect to the energy
norm, it holds that

lle — Gpul| = min |[ju —vg|| for all uw € H, (1.21)
v €EXp

i.e., the Galerkin solution Gpu is the best approrimation of u with respect to the energy norm.

Proof. For arbitrary v, € X}, the Galerkin orthogonality (1.17) proves that
lu = Grull® = {u — Gpu s u —vi) < [lu — Gpul|lu —vpl,

which yields (1.21) with an infimum on the right-hand side. Of course, the minimum in (1.21) is
attained for v, = Gpu. With the same arguments as in the proof of the last lemma, we even see

that
allu — Gpullg < Jlu — Gpul| < Jlu — il < Bllu — vill#,

which implies (1.20) with an infimum on the right-hand side. This minimum is attained for v;, =
IM;u with II;, : X — X}, being the orthogonal projection onto X}, with respect to || - ||z. |

Exercise 2. Let X be a normed vector space over R and X;, C X be a finite dimensional
subspace of X. Then, for any x € X, there exists some (not necessarily unique) z;, € X such
that

|z —znllx = Jnin. |z — vnllx,

i.e., best approximation errors on finite dimensional spaces as in (1.20) are always attained.
Prove that the set of minimizers is convex, closed and bounded (and hence even compact). O

A major advantage of Galerkin methods is that one can prove convergence for any exact solution
u € H if one knows that smooth functions can be approximated well. In the following, think of the
subscript h > 0 as a mesh-size parameter with corresponding finite dimensional spaces Xp:
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Proposition 1.7. For all h > 0, let X}, be a finite-dimensional subspace of H. We assume
that there is a dense subspace D of H with approximation property, namely

lim min ||[v—ovullg =0 forallve D. (1.22)

h—0v,€X),

Then, for any w € H, it holds that

lim ||u - GhuHH = 0, (1.23)
h—0

i.e., the sequence of Galerkin solutions converges to the exact solution wu.

Proof. For v € D, the quasi-optimality (1.20) yields that

B . B )
— G < — — < = — — i
lu — Grullg < o i |u —vnlla < o ([l = vz + min v —onllm)

We have to show that
30>0V€>03h0>0\7h€(0,h0) ||U—Ghu||H§C€.

For ¢ > 0, let v € D with |lu — v||g < e. Choose hy > 0 according to the approximation
assumption (1.23) so that min,, cx, ||[v — vp|lg < € for all b € (0,hy). We thus finally obtain
|lu — Gpullg < 2Be/a, which concludes the proof. [ |

Although the result of the preceding lemma seems to be very attractive, we stress, however,
that the convergence of a Galerkin scheme can be arbitrarily slow. We argue in the abstract setting:
If H is a separable Hilbert space, e.g., H is a Sobolev space, there is a countable orthonormal basis
{qu ‘j € N}. Any u € H can be written as u = Z‘;‘;l xj¢; with coefficients (z,,) € £5. If we define
X, :=span{¢i,...,¢;}, it holds that

o0
. 2 _ 2
min |lu —v = g x5
v EX), ” h”H Pt J

Finally, the decay of the right-hand side can be very slow. One may think of, e.g., x? = 5=+ for
any € > 0, so that the series converges but is — in the beginning — almost the divergent harmonic
series.

The following exercise shows that the approximation property (1.22) in particular implies that
the Hilbert space H has to be separable.

Ezxercise 3. Suppose that X is a normed space with finite dimensional subspaces X, C
Xyr1 C X for all £ € N. Suppose that D C X is a dense subspace such that, for all z € X,

lim min |z — =0. 1.24
Jim min lo —zefx =0 (1.24)

Then, X is separable, i.e., there is a countable and dense subset M C X. O
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Ezercise 4. Let X =l and X; = {(z,) € loc |z; = 0 for all j > ¢}. Prove that (1.24)
fails to hold for any dense subspace D. Note that this also follows if one proves that £, is not
separable. O

Remark. All foregoing results of this section hold (in a slightly modified form) in case that (- ; -)
only is a continuous and elliptic bilinear form on the Hilbert space H, i.e., in all proofs, one can
avoid to use the symmetry of (- ; -). |

The following exercise explains why ||- || is called energy norm. In many situations, the function
J(-) has the interpretation of a physical energy.

Exercise 5. Let (- ;-) be a scalar product on the Hilbert space H such that the norm || - ||
is equivalent to || - ||g. Let F' € H* and u € H. Then, the following assertions are equivalent:

o (u;-)=FeH",

e J(u) = min J(v), where J(v) :=
veH

(v v) = F(v).

N~

In particular, the variational formulation is equivalent to energy minimization, and this result
also covers the discrete setting. Derive a formula for the energy error J(Gju) — Ju), where
Gy, : H — X}, denotes the Galerkin projection. O

Finally, we comment on an extension of the concept of Galerkin schemes to some nonlinear
problems. We note that this framework does, in particular, cover the frame of the Lax—Milgram
lemma.

Ezxercise 6 (Main Theorem on Strongly Monotone Operators (Zarantonello ’60)).
Let H be a Hilbert space and A : H — H* be a Lipschitz continuous and strongly monotone
operator, i.e.,

|Au — Av||g < Ll|lu —v||g and (Au— Av;u—0)gexpg > M|lu—v|% for all u,v € H

with constants L, M > 0 that only depend on A. Then, A is bijective. =~ Hint: Injectivity of
A follows from the monotonicity of A. To prove surjectivity, we apply a fixed point argument:
Let Iy : H— H*, Iy(u) := (u ; -)g denote the Riesz mapping. For given F' € H* and a certain
choice of C' > 0, the mapping ®(u) := u — CI'(Au — F) is a contraction on H. Therefore,
the Banach contraction theorem applies and provides a unique v € H with u = ®(u). O

Ezercise 7 (Lemma of Lax—Milgram). Use Exercise 6 to derive the Lemma of Lax—
Milgram: Let H be a Hilbert space and a(-,-) be a continuous and elliptic bilinear form on H,
i.e.,

a(u,v) < Lljullg|lvllg  and  a(u,u) > M |u|3 for all u,v € H,

where the constants L, M > 0 depend only on a(-,-). Then, given a right-hand side F € H*,
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there is a unique v € H with a(u, ) = F € H*. O

Exercise 8. Define the Galerkin method in the context of monotone operators: Under the
assumptions of Exercise 6, we aim to approximate the solution u € H of Au = F € H*.
How does the Galerkin method look like in this setting? Prove that the Galerkin operator
Gy, : H — X), onto a finite dimensional subspace X, C H is a well-defined (in general non-
linear) and Lipschitz-continuous projection, i.e., G,% = Gy, with

IGhu — Gyvllg < C|lu—v|g forall u,v € H.
Céa lemma

lu — Gpul|g < C min ||ju—vy||g for all u € H.
v €Xp

Show that the constants C' > 0 depend only on A. O

Ezxercise 9. We stick with the setting of monotone operators from Exercise 7 and 8: How can
one compute the Galerkin approximation u;, = Gpu € X}, of a solution u € H of Au = F € H*?
For N = dim X}, provide a (nonlinear) system of equations in RN which characterizes the
unique solution uy, = Gpu € X};. What happens if the operator A is linear? O

10



Chapter 2

Sobolev Spaces and Poisson Problem

2.1 Sobolev Spaces on Domains

This section briefly recalls the definition of Sobolev spaces H™((2), for integer order m € Ny, on
domains © C R? While this section requires € only to be open and connected, the following
sections will implicitly assume that €2 is a bounded Lipschitz domain.

Definition. A function u € Lj (Q) := {w : @ — R measurable | VK C Q compact w € L*(K)}

has a weak partial derivative J;u € L}OC(Q), if the pair (u, 0;u) satisfies the integration by parts
formula with smooth test functions that vanish on the boundary, i.e., it holds that

/ uw(0jv) de = — / (Oju)vdr  for all v € D(Q) := C°(). (2.1)
Q Q

Note that 0ju is (so far) only a symbol, whereas 0jv := 0v/0x; is the classical j-th derivative of
v € D(Q). We say that u € L}, () is weakly differentiable with weak gradient Vu € L} (),
if all weak derivatives d;u, for j =1,...,d, exist. O

From the main theorem of calculus, we infer that the weak derivative is unique, if it exists.
Moreover, the weak derivative and the classical derivative coincide, if the classical derivative exists.

Theorem 2.1 (Fundamental Theorem of Calculus of Variations). Let f € L} (Q)

foc

satisfy fQ fvdx =0 for all v € D(Y). Then, it holds that f =0 almost everywhere in Q. N

Remark. Note that C(Q) C L}, .(Q). For f € C(9), the fundamental theorem of calculus of
variations can be proven by elementary calculus: Note that for any z € R? and any radius € > 0,
there is a function ¢ € D(R?) such that {y € R? ! Y(y) > 0} =Ulx,e) :=={y € Rd‘ |z —y| < e}
see the following Exercise 10. Provided f € C(f2) with f(z) # 0 for some x € 2, we may assume
f(z) > 0. By continuity, there is a small radius € > 0 such that U(z,e) C Q and that f(y) > 0
for all y € U(x,e). With the associated function 1) € D(€2), we thus see that [, f¢dz > 0. Note
that this argument provides the (logically equivalent) contraposition of the fundamental theorem
of calculus of variations in the case of a continuous function f. O

11
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Ezxercise 10. (i) Show that the following definition provides ¢ € C*°(R) with supp(¢) =
[—1,1]:

0 else.

P(t) = {exp (- 1/ =), forf <1,

(ii) For € > 0 and = € R?, define the function 1, . (y) := ¢(|z—y|?/e). Show that ¢, . € C=(R%)
with supp(vzc) = {y € R ||z —y| < e} and ¢ (y) >0 forally € {y e R ||z —y| <e}. O

Corollary 2.2. (i) The weakf(\ifrivative Oju is unique, if it exists: If @u,% € L%OC(Q)
satisfy (2.1), it holds that Oju = dju almost everywhere in §.
(i) A function u € C1(Q) is weakly differentiable, and the weak derivative coincides with the

classical derivative.

Proof. (i) It holds that [, (9ju — 5;1;)21 dr = 0 for all v € D(Q) and thus Jju — 5;L = 0 almost
everywhere in 2. (ii) follows from (i) and the integration by parts formula. [

A deeper result is the following, which is somehow, nevertheless, quite natural and expected.

Theorem 2.3. Ifu c L) (Q) is weakly differentiable with Vu = 0, then the function u is

Loc
constant, i.e., there is a constant ¢ € R such that u = ¢ almost everywhere in 2. |

Definition. For m = 0, we define H°(Q) := L?(2) as the classical Lebesgue space of square
integrable functions. For m = 1, the Sobolev space H'!(Q) is defined by

HY(Q) = {ue L*(Q) | u weakly differentiable, Vu € L2(Q)} (2.2)

and associated with the graph norm

lullzr sy = (ulFaqe) + IVulze) (23
Higher-order Sobolev spaces of integer order m € N may be defined inductively by
H™(Q) = {u¢e L*(Q) | u weakly differentiable, Vu € Hm_l(Q)}, (2.4)
with associated norm
lall ey = (lall3zgqy + IVl 2o ) > (2.5)
Remark. Clearly, C*(Q) C HY(Q2) and we note below that C1(Q) is even dense in H(Q). 0

Theorem 2.4. For all m € Ny, the Sobolev space H™(Q2) is a Hilbert space.

12
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Proof. The proof uses the (hopefully) well-known fact that H°(Q) = L?(Q) is a Hilbert space. We
shall proceed by induction on m. However, we explicitely consider the case m = 1 first: Obviously,
the H'-norm is induced by the scalar product

(w5 v) ) = (u; V)2 + (Vu; Vo) ey forall u,v € HY(Q),

ie., ||u\|%{1(9) = (u ; u)g(q)- Therefore, it only remains to prove the completeness of HY(Q). Let

(un) be a Cauchy sequence in H'(2). Note that, by definition of the H'-norm, (u,) as well as
(Vu,) are Cauchy sequences in L?(€). Since L?(f2) is complete, there are unique u € L*(Q)) and
g € L?(Q)? such that

lim flu —un|[r2(@) = 0= lim g — Vun|2q).
By definition of H!(Q), it thus only remains to prove that u is weakly differentiable with gradient
Vu = g. Let v € D(2) be an arbitrary test function. From the weak differentiability of each wu,,
and L?-convergence, we obtain that

(u; 0jv) o) = nh_)lgo(un ; 0jv)2(0) = — nlLrI;O(ajun ) r2) = —(95 5 v)2(Q)-
Therefore, g; is the j-th weak derivative of u and consequently g = Vu. This concludes the case

m = 1. The induction step for H™(2) is left to the reader, but obviously follows from the same
arguments, where we replace g € L%(Q)¢ by g € H™1(Q)4. [

2.2 Main Theorems on Sobolev Spaces

From now on, it will be important and thus assumed that  C R? is a bounded Lipschitz domain.
By definition of the Sobolev spaces H™ (), there holds H™(Q) ¢ H™ 1 (Q) with |l rm-1(q) <
[ul| grm (). In other words, the identity operator id : H™() — H™ 1(Q) is well-defined and
continuous. The following Rellich theorem states that it is also compact. This is a pretty strong
result. The impact of which will become clear in our proofs of the Poincaré inequality and the
Friedrichs inequality.

Theorem 2.5 (Rellich Compactness Theorem). For any integer order m € N, the
embedding H™(Q) C H™1(Q) is compact. [

We recall that an operator A € L(X;Y") between normed spaces X and Y is compact, if and
only if each bounded set S C X is mapped to a pre-compact set A(S) C Y, ie., A(S) C Y is
compact.

Lemma 2.6. Suppose that A € L(X;Y) is a compact operator between a Banach space X
and a normed space Y and that (x,,) is a weakly convergent sequence, i.e., x, — x € X. Then,
the image (Ax,) is strongly convergent to Az inY, i.e., Ax, — Az €Y.

Proof. Using the adjoint operator A* € L(Y™*; X*), one sees that Az, — Az € Y. As-
sume that (Az,) does not strongly converge to Azx. Then, there is a subsequence (Az,,) with

13
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infren || Az, — Az|ly > € for some € > 0. Recall that weakly convergent sequence are always
bounded. Compactness thus provides a further subsequence (Axy,,) of (Az,, ) with Az,,, -y €Y.
In particular, Az,,, — y € Y and therefore y = Ax. This contradicts the choice of the subsequence
(Azy,,). [

Exercise 11. Let X be a reflexive Banach space and Y be a normed space. Suppose that
A € L(X,Y) is completely continuous, i.e., for all (x,) in X, weak convergence x,, — z in
X implies strong convergence Az, — Az in Y. Prove that A is compact, i.e., for X being
reflexive, the operator A is compact if and only if it is completely continuous. O

Before the statement and the proof of the Poincaré inequality, we need a further technical
lemma. The result is rather standard in the analysis of variational problems.

Lemma 2.7. A continuous and convex functional f : X — R on a normed space X is weakly
lower semicontinuous, i.e., for each weakly convergent sequence () in X with x, — x € X,
1t holds that

f(@) < liminf f(zn). (2.6)

Proof. 1. step. We prove that the epigraph G := {(w,a) e X xR ! flx) < a} is convex: For
(z,a), (y,B) € G and 0 < 0 < 1, the convexity of f proves that

fOx+ (1 =0)y) <O0f(x)+ (1 -0)f(y) < ba+ (1-0)5

whence 6(z,a) + (1 —0)(y,B) € G, i.e., G C X x R is convex.

2. step. We use the continuity of f to prove that G is also closed: Let (x,, a;,) be a convergent
sequence in G, i.e., it holds that z,, — = € X and «,, =& a € R. We prove that (z,«) € G, which
follows from

f(z)= lim f(x,) < lim a, = a.
n—oo n—oo

3. step. The following step in the proof is known as Mazur’s lemma: We prove that the closed
and convex set G is also weakly closed in X xR =: Y, i.e., closed with respect to the weak topology
on Y. We argue by contradiction and assume that G is not weakly closed. Then, there is an element
Yy € EU\G, where G” denotes the weak closure of G. According to the Hahn-Banach separation
theorem, there is a functional ¢ € Y* and a scalar A € R such that ¢(y) < A <inf ¢(G). Therefore
U := ¢ !(—0o0, ) is weakly open with y € U and U NG = (). This contradicts topologically that y
is in the weak closure of G. Hence, G = G’ is weakly closed, and we may proceed with the proof
of (2.6).

4. step. We show the weak lower semicontinuity of f: Suppose that x, — = € X. For
a := liminf, f(z,) = oo, (2.6) is trivial. We thus may assume a < oco. Let f > a and define
ayp = max{s, f(x,)} — B. Clearly, (z,,q,) € G. Moreover, this sequence is weakly convergent
(n,n) — (z,6). We deduce (x,8) € G. Thus, f(z) < 8 for all 3 > « and therefore finally
f@)<a= lim f(z,) ¥

A first consequence of the preceding abstract results is that one can easily construct equivalent
norms on the Sobolev space H'(Q).

14
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Proposition 2.8. Let |- |1 be a continuous seminorm on HY(Q2) which is definite on the
constant functions, i.e., |c|gn = 0 implies ¢ = 0 for all ¢ € R. Then, there are constants
C1,Cy > 0 such that

vl < C1llvllgi)  as well as ;! [vllz2e) < vl = [[Vollp2 ) + [v]f for allv € HY(Q).
In particular, || - || defines an equivalent norm on H'(), i.e.,

L+ C) 7 Il < Nolla o) < (L +Co) vl for all v € HY(Q).

Proof. 1. step. Existence of C1: By definition of continuity, there exists an open neighborhood
O C HY(Q) of 0 such that |v|g1 < 1 for all v € O. Without loss of generality, we may choose a
radius 7 > 0 sufficiently small such that B,.(0) C O C H(Q) for the closed ball with radius r and
center zero. This implies

1 v 1
Wl = =[vlla@)lrim——Im < =lvllm@-
r ||U||H1(Q) T

This proves existence of Cy :=1/r.

2. step. Existence of C: We assume that there is no constant Cy > 0 such that [|v]|z2q) <
Cy||v|| for all v € HY(Q). Therefore, there exists a sequence (v,) in H() such that

1
~lonlizz@) > llvall = 1Voallz2@) + lvnlm
The definition of wy, := vn/||vnll12(0) leads to to a sequence (w,) in H'(Q) such that
lwnllr2@) =1, [[Vwnllr2@) <1/n,  |wnlg < 1/n.

Therefore, (w,) is a bounded sequence in the Hilbert space H'(2). A Hilbert space is reflexive.
By virtue of the Banach-Alaoglou theorem, each bounded sequence thus has a weakly convergent
subsequence. Therefore, we may assume that w, — w € H'(Q2). An application of Lemma 2.7
proves that

Vw2 (@) < liminf [[Vwn[| 22 () = 0,
whence the weak limit w is constant. Another application of Lemma 2.7 proves that
|w| g < liminf |wy,| g1 =0
n—o0

since a seminorm is always convex. Therefore, w = 0. On the other hand, the Rellich theorem
states the strong convergence w, — w € L*(Q) and thus [|w|[;2q) = lim |Jwy|2@q) = 1. This
n—oo

contradiction concludes the existence of Cy. In particular, we hence observe [|v||g1(q) < [|v]|z2(q) +
IVollr2@) < (C2+ 1) [lv]l. u

15
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Corollary 2.9 (Poincaré Inequality). It holds that
[l z2(0) < Cp <||Vv||L2(Q) + | / vd:z:|> for allv e HY(Q), (2.7)
Q

where the constant Cp > 0 depends only on Q. Moreover, ||v|| := V][ 2(0) + | Jqvdax| defines
even an equivalent norm on H'(£2).

Proof. According to Proposition 2.8, it only remains to show that
[v|g = ‘/ vdw‘ for v € HY(Q)
Q

defines a continuous seminorm on H'(§2) which is definite on the constant functions. The equality
lelg = |92||¢| for ¢ € R verifies the definiteness. Lipschitz continuity follows from

ol = lolin| < | | 0= wda] < 19120 = wlza@) <1910 = wlln o

and from the boundedness of €. [ |

Corollary 2.10 (Poincaré Inequality). There is a constant Cp > 0, which depends only
on the shape of € but not on its diameter, such that

vl 22y < Cpdiam(Q) [[Vvl|r2q)  for all v € HI(Q) = {we H'(Q) ‘ Jqwdz =0}, (2.8)

where diam(€2) = sup {|z — y| | z,y € Q} denotes the diameter of €.

Proof. The proof is a so-called scaling argument: We define \ := diam({2) and Q= 2.
Note that the scaled domain €2 satisfies diam(ﬁ) = 1 and depends only on the shape of Q2. We
consider the affine bijection ® : Q — Q, ®(z) := A~'z. Recall the transformation theorem, which
holds for arbitrary diffeomorphisms ® : Q — O and states that

/fdy—/f ) |det D®(z)|dz for all f e L'(9).

Note that det D®(x) = A=¢ since D® = A~'T in our case. For v € H*(Q), we define v :=vo®~! €

H'(€). Then,
~112 ~12 —d 2 —d 2
v = = v|fdy = A / v|*der = X"%v .
191172 g /ﬁl | Q\ | 10]Z2 (@

According to the chain rule, it holds that Vo = A (Vo) o ®~! and consequently that

With Cp > 0 the Poincaré constant from (2.7) for €, we thus infer
= XN CE|IVol[f2q).

101220y = X T2, < A CRIVTI, g =
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Note that Cp depends only on Q und thus only on the shape of 2. This concludes the proof. N

Remark. We stress that Iv := [, vdz defines a linear and continuous functional on H'(Q). In
particular, H}(Q2) = ker(I) is a closed subspace of H'(2) and hence a Hilbert space. According

to the Poincaré inequality, it holds that [|[Vv|z2) < [[vl[gi) < (1 + CP)I/QHVUHLQ for all
v € H}(Q). In particular, ||[Vo| 12(q) defines an equivalent Hllbert norm on H} () with assomated
scalar product (Vu ; Vv)r2(q). O

Theorem 2.11 (Meyers-Serrin).  For each integer order m € N, C*°(Q) and, in particular,
C®(Q) N H™() are dense subspaces of H™(S2). [ |

Theorem 2.12 (Trace Operator). There is a unique operator v € L(H'(Q); L*(I)) such
that yv = v|r for all v € CY(Q), i.e., v extends the classical trace defined as restriction v|r on
the boundary for smooth functions v. |

As a first corollary to Theorem 2.12, we can prove that the integration by parts formula also
holds for Sobolev functions u,v € H(1).

Corollary 2.13 (Integration by Parts).  For all u,v € H'(Q), it holds that

72 L yde = ds. 2.
u&pj dm—{—/ 8%1)(1:17 /Fvuyvnjds (2.9)

Proof. The formula (2.9) holds for u,v € C'(2). All three terms define continuous bilinear forms
on HY(Q) x HY(Q). Therefore (2.9) follows, for arbitrary u,v € H(Q) from the density of C*(Q)
in H'(Q): Given u,v € H'(Q), there are sequences (u,) and (v,) in C'(Q) which converge to
u resp. v in H'(2). Therefore, if a(-,-) : HY(Q) x H(Q) — R is continuous, then it holds that

lim a(uy,v,) = a(u,v). This concludes the proof. [
n—oo

The analytical treatment of the Dirichlet problem makes use of the so-called Friedrichs inequal-
ity, whereas the analytical treatment of the Neumann problem uses the previously proven Poincaré
inequality.

Corollary 2.14 (Friedrichs Inequality). Assume that the Dirichlet boundary I'p C T
has positive surface measure |I'p| > 0. Then, it holds that

[vllz20) < Cr (IVVllz2y + 7ol 2 rp))  for all v e HY(Q) (2.10)

with a constant 51: > 0, which depends only on Q and I'p. Moreover, the right-hand side
vl == Vvl z2(q) + [[vvll2 0,y even defines an equivalent norm on H'(Q).

Proof. We again apply Proposition 2.8. It only remains to show that

ol = |wlleew,) for ve HY(Q)

17
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defines a continuous seminorm on H!(Q2) which is definite on the constant functions. The defi-
niteness is again easily obtained from |¢[g1 = [Tp|Y/?|¢| for ¢ € R. Lipschitz continuity follows
from

[0l = wlg| < lvw = ywll2@p) = V(0 — w2y < Cllv — wll g

according to the continuity of the trace operator v € L(H!(Q); L*(T)). [

Definition. We define H}(Q) = D(Q)H'”H1 and H}(Q) := Cb(ﬁ)lH'Hl, where the subscript D
indicates the Dirichlet boundary I'p. By definition, H}(2) as well as H},(€2) are closed subspaces
of H'(2) and thus Hilbert spaces. In particular, it holds that H{(Q) C HE(Q). O

The same scaling argument as for the Poincaré inequality proves the following variant of the
Friedrichs inequality, where we note that continuity of the trace operator v proves that vv = 0, for
v € HE(Q), as well as (yv)|r, = 0, for v € HE(Q).

Corollary 2.15 (Friedrichs Inequality). It holds that

HUHLz(Q) < Cr diam(Q) HV’UHLZ(Q) for allv € H})(Q) (2.11)

with a constant Crp > 0 that depends only on the shape of 2 and I'p. |

We finally note the relation between Hb(F ) and the trace operator, cf. the Theorem of Meyers-
Serrin.

Theorem 2.16.  There holds H}(Q) = ker(y) with v € L(H*(Q); L*>(T")) the trace operator.
Moreover, HL,(9) = {v € H'(Q) | (yv)|r,, = 0}. |

Ezxercise 12. Usually, one defines the range of the trace operator as H'/2(I') := range(y) C
L?(T'). This space is associated with the norm vl gr1/2(ry = inf {Iol a0 |v e HY(Q) with 40 =
v}. Prove that H 1/2(T) associated with this norm is a Hilbert space with continuous inclusion
HY2(T') € L*(T'). Hint: Recall the definition and the standard results on quotient spaces
and the associated quotient norm! O

For X = HY(Q) and Y = L?(), the following exercise shows that the L2-scalar products
(f ' )12( for f € L*(Q) give (up to density) all linear and continuous functionals on H'(Q2), i.e.,
the embedding L*(Q) — H*(Q)*, f — (f 5 ) 12(q) is well-defined, linear, continuous, and injective
with dense image.

Ezxercise 13. Let X and Y be Hilbert spaces with continuous embedding X C Y. Show
that the mapping I : Y* — X* Iy* := y*|x is well-defined, linear, and continuous. Prove that
I(Y*) C X* is a dense subspace. Moreover, if X CY is dense with respect to || - ||y, then the
embedding I is even injective. O
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2.3 Weak Form of Laplace Problem

2.3.1 Dirichlet Problem

In this section, we generalize the variational form derived in the introductory section to our Hilbert
space setting. We start with the homogeneous Dirichlet problem

—Au=f in ),

2.12
u=0 onlT. ( )

Recall that this formulation is called the strong form of the boundary value problem. The following
proposition provides the — in some sense — equivalent and always uniquely solvable weak form of
the boundary value problem.

Proposition 2.17. (i) Provided that u € C%*(Q) solves (2.12) for a given source term
f € C(Q), it holds that u € HL(Y) as well as

(Vu; Vo)pa) = (f 5 v)2) forallv e H(Q). (2.13)
(ii) Given f € L*(Q), the weak form (2.13) has a unique solution u € HE(Q). It holds that

(f 5 V)20

lull iy <C sup L < ClIf 2y (2.14)

vert@\foy vl ()
where the constant C > 0 depends only on €.

(iii) Provided that f € C(Q) and that the weak solution u € H(Q) of (2.13) additionally
satisfies u € C?(Q), then u even solves the strong form (2.12).

Proof. (i) We have already seen before that a strong solution u € C?(€2) solves the variational

form (2.13) for test functions v € C§(Q) := {w € C'(Q) |w|r = 0} replacing Hg(€2); see Propo-

sition 1.1. If we keep u fixed, the left-hand side as well as the right-hand side of (2.13) define

continuous and linear functionals on H'(Q). Note that the closure of C}(2) with respect to the

H'-norm leads to the Hilbert space HE(2). Therefore, standard density arguments prove (2.13).
(ii) According to the Friedrichs inequality, it holds that

IVolF20) < 0l @) < (1+CE) [VollF2q) for all v e Hy(Q).

Therefore, the left-hand side of (2.13) defines an equivalent scalar product on H}(€2). The Riesz
theorem thus provides a unique weak solution u € H}(Q2) of (2.13). Plugging-in u = v € H}(Q),
the weak form yields that

9\ (f?U)L2Q
1+ C3) MulZi < IVulbay = (F 5 Wiz < sup ~r e Jlu]| 1

veHL (Q)\{0} H’UHHl(Q)
which results in the first estimate of (2.14). The second estimate follows from the Cauchy inequality

(f5 )2 < Ifllez@llvlize@) < 1z vl @)-
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(iii) Since the weak solution u is smooth, we may use integration by parts to see that
(Vu; Vo)roq) = (—Au ;s v)2q) forallv e H(Q).
The difference with the weak form (2.13) thus yields that

0=(f+Au;v)2q) foralve HY ().

Note that F' := f + Au € C(Q). With D(Q) C H}(Q), Theorem 2.1 proves F = 0; see also
the remark right after Theorem 2.1. Consequently, it holds that —Au = f in 2. The Dirichlet
boundary conditions (in the strong form) follow from 0 = yu = u|p. Altogether, u solves (2.12) W

2.3.2 Mixed Boundary Value Problem

Second, we consider the mixed boundary value problem

—Au=f in Q,
u=0 onI'p, (2.15)
Ju/On =¢ onTn,

with ' =T pUl N, TpNTx = 0, and [T'p| > 0. The limit case |T'p| = 0 corresponds to the Neumann
problem which is treated in Section 2.3.3. Recall the trace norm ||| 12y from Exercise 12. Then,
the main proposition reads as follows:

Proposition 2.18. (i) Suppose that T'y is s_mooth, i.e., the outer normal vector depends
continuously on x € T'x. Provided that u € C%(Q) solves the strong form (2.15) for a given
source term f € C(Q2) and Neumann data ¢ € C(T'n), it holds that u € H5(Q) as well as

(Vu; Vo) 2y = (f 5 0)12(0) + (0 W) 2@y for allv € Hp(Q). (2.16)
(ii) Given f € L?(Q) and ¢ € L*(T'n), the weak form (2.16) has a unique solution u € H}(2).
It holds that

HUI!H1(9)§01< wp 0@ o M)
vEH L ()\{0} [vllz (@) weHY/2(IM\{0} ”w”Hl/Z(p)

< Co ([Ifle2@) + ol L2 ry))

(2.17)

where the constants C1,Co > 0 depend only on Q and I'p.

(iii) Provided that f € C(Q) and ¢ € C(Tn) and that the weak solution u € HH(Q) of (2.16)
additionally satisfies u € C?(SY), then u even solves the strong form (2.15).

Proof is done in the exercises. |
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2.3.3 Neumann Problem
Finally, we consider the Neumann problem

—Au=f in Q,

ou/on=¢ onT. (2.18)

Note that the solution u of (2.18) cannot be unique: If u € C%(Q) solves the strong form (2.18),
also u + ¢ solves (2.18), for all ¢ € R. To fix the additive constant, we seek a solution which
additionally satisfies, e.g., that

Aumza (2.19)

Moreover, the Gauss divergence theorem shows

—/Qfdw:/QAudw:/QdiV(Vu)dx:/F%dSZ/F(bds.

Therefore, the data f and ¢ have to satisfy the compatibility condition

/fm+/¢@=o (2.20)

Q r

to allow for the existence of (strong) solutions. Recall the trace norm || - || y1/2(py from Exercise 12.
Proposition 2.19. (i) Suppose that T' is smooth, i.e., the outer normal vector depends

continuously on x € T'. Provided that v € C?(Q) solves (2.18) for a given source term f € C(Q)
and Neumann data ¢ € C(T), it holds that u € H*(Q) and

(Vu; Vo)pai) = (F 5 ) 12(0) + (65 70) 2y for allv € HY(Q). (2.21)
(ii) Given f € L*(Q) and ¢ € L*(T"), the variational formulation
(Va3 Vo)) = (f 5 0)r2) + (65 W) 2y for all v € HY() (2.22)

has a unique solution u € H(Q) := {v e H'(Q)| [,vdz =0},

(iii) Provided that the data f € L*(Q) and ¢ € L*T) satisfy (2.20), the unique solution
u € HX(Q) of (2.22) even solves the weak form (2.21). Moreover, it holds that

[ull i) < Ch ( sup Ui +  sup M)
veH(Q)\{0} HUHHl(Q) weHY/2(I)\{0} Hw|]H1/2(F)

< Co (Ifllz2) + N9l L2ry)

(2.23)

where the constants C1,Cy > 0 depend only on Q.

(iv) Provided that f € C(Q) and ¢ € C(T) satisfy (2.20) and that the weak solution u €
HY(Q) of (2.21) resp. (2.22) additionally satisfies u € C*(Q)), then u even solves the strong
form (2.18).
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Proof. (i) The variational form (2.21) holds for test functions v € C'(f2) according to integration
by parts. For fixed u, the left-hand as well as the right-hand side define continuous linear functionals
on HY(Q). Thus, (2.21) follows for v € H'(Q2) by density arguments. (ii) According to the
Poincaré inequality, it holds that

IVol720) < 0l @) < 1+ CP)[Volfzg) for all v e HI(Q).

Therefore, the left-hand side of (2.22) defines an equivalent scalar product on H}(2). Note that
H}(9Q) is a closed subspace of H'(2) and hence a Hilbert space. Therefore, (2.22) follows from the
Riesz theorem. (iii) For a function v € H*(Q), we define v := v — vq € H} (), where vg € R
denotes the integral mean vg := (1/[Q|) [, vdz € R. Note that (2.20) implies that

(f 5 va)re@) + (95 va) 2y = 0.
Thus, (2.22) proves that
(Vu ;s Vo)) = (Vu s Vo) r2) = (f 5 0)2) + (05 70) 20y = (f 5 0)p2() + (05 70) L2 (1),
i.e., u even solves (2.21). Plugging-in u = v, we see that

(f:v)2@
IVulZoy < sup Dl gaoy + sup
verm@\(o} vl @) wer2onfop 1Wle

(65 w) L2y
Ul g2y

where we have used that H/?(I') = range(y). Note that the H'/?-norm is defined in such a way
that v € L(H'(Q); HY/*(T")) with [vull g2y < l[ull (). Therefore,

(f 5 v) 20 (¢ w)p2r
IVull20) < llullm o) ( sup S gup 7”>
veHY(Q)\{0} ||U||H1(Q) weH1/2(T)\{0} HwHH1/2(r)

Together with (1 + 6’123)_1Hu||§{1(m < HVuH%Q(Q), this proves the first estimate in (2.23). As above,

the first supremum may be estimated by |[|f|z2(q). With the continuous embedding H 12(r) ¢
L?(T), the numerator of the second supremum can be dominated by

(&5 w) 2y < Nellzzmyllwllzery < Clol ey lwl giey-

This provides the upper bound C'[|¢| ;2 (r) for the second supremum. (iv) As above, we may
use integration by parts to see that

(f +Au;v)p2) + (¢ —u/On 5 yv) 2y =0 for all v € HY(Q).

From this, we first conclude f = —Awu by use of Theorem 2.1 for test functions v € D(2) C H(Q) C
H'(Q). To prove ¢ = du/On, one proceeds analogously to the remark right after Theorem 2.1. W
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Chapter 3

A Priori Analysis

xr hr yr

FIGURE 3.1. The diameter hp of the triangle T is the length of the longest edge (possibly non
unique). The quantity op denotes the corresponding height.

3.1 P1-Finite Element Method in 2D

A set T C R? is called a non-degenerate triangle provided that there are nodes @7, yr, 27 € R?
with T' = conv{zr,yr, zr} and provided that |T'| > 0, i.e., T has positive measure. We note that
T is in particular bounded and closed, whence compact. We denote by

Kr = {z7r,yr, 21} (3.1)
the set of nodes of T" and by
Er = { conv{zp,yr}, conv{yr, zp}, conv{zp, 7} } (3.2)
the set of edges of T'. The diameter of T" is denoted by
hy = diam(T) := max {|z — y| | z,y € T}. (3.3)
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Moreover, we define the edge length
hg = diam(E) := max {|z — y||z,y € E} (3.4)

for all edges £ € &p. Clearly, the diameter hp of a triangle is the length of the longest edge
(possibly non unique), i.e., there is some E € Ep with hp = hg. The height over the longest edge
E of T is denoted by or, cf. Figure 3.1. Recall that the measure of the triangle reads

hrpr
|T| = 5 (3.5)
The most important example is the reference triangle
Tret = COHV{(Ov 0)7 (17 0)7 (07 1)} (36)

which has measure |Tiqf| = 1/2.

Ezercise 14. Give a formal proof that the diameter of a triangle T' is the length of one
longest edge, i.e., hy = maxgeg, hg. Hint: Use that the convex hull conv(M) := N {M C

R? | M is convex with M C M } of aset M C R%is also characterized by conv(M) = { Z;V:1 AT
|N € N,z; € M,\; > 0 with Z;vzl Aj = 1}. The proof then directly applies to general sim-
plices in R, i.e., T = conv{xzy,...,zq} C R% O

T/
T T

FIGURE 3.2. For a reqular triangulation T, the intersection of two elements T # T’ is either
empty, a joint node, or a joint edge.

Definition. A set T is a triangulation of Q2 (consisting of triangles) if and only if
e 7 is a finite set of non-degenerate triangles,
e the closure of  is covered by T, ie., Q =T,
e for all T,7" € T with T # T’, it holds that [T NT’| = 0, i.e., the overlap is a set of measure
Z€ro.

By K :=U {ac € Kr ‘ T € T}, we then denote the set of nodes of the triangulation 7 and by
E=U {E cér ‘ T e ’T} the set of edges of the triangulation 7. A triangulation of 2 is called
conforming or regular (in the sense of Ciarlet) provided that the intersection of two elements
T,T' € T with T # T" is
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e cither empty,
e or a joint node, i.e., TNT' ={z} = Kr N Ky,
e or a joint edge, ie., E:=TNT € ErN&qr,

cf. Figure 3.2. According to this regularity assumption, an edge E € £ with surface measure
|[ENT| > 0 automatically satisfies £ C T, i.e., an edge E is either a boundary edge or an interior
edge. Additionally, we always assume that a regular triangulation resolves the boundary conditions:
If I' = 99 is partitioned into Dirichlet and Neumann boundary I'p and I'y, respectively, each
boundary edge E € £ with F C I' satisfies

e cither ECTp
e or ECTIn.
With this assumption, we define the (disjoint) sets of boundary edges
Ep={Ec&|ECTp} and &v:={Ec&|ECTn} (3.7)
as well as the set of all interior edges
Ea=E\(EpU&nN). (3.8)

We finally note that, for each E € £q, there are two elements T,7" € T with E =T NT".

Exercise 15. Let T be a regular triangulation of 2 and v : Q — R such that v|r € CY(T) for
all T € T. Prove that v € H'(Q) if and only if v € C(Q). O

The following proposition essentially follows from the regularity of the triangulation 7.

Proposition 3.1. For a regular triangulation T of 1, we define the discrete space
SUT)={v, e C(Q|YT €T wvplr affine} (3.9)

of all T -piecewise affine and globally continuous functions. Then, there holds the following:
(i) SY(T) is an N-dimensional subspace of H'(Q) with N = #K the number of nodes.
(ii) For each node z € K, there is a unique hat function

C. e SUT) with C.(2) =06, foralZ eK. (3.10)

(ili) The set B :={(. |z € K} is a basis of SY(T), the so-called nodal basis.

Proof. 1. step. According to the regularity of 7, hat functions (, are automatically continuous
on €2: For each element 1" € T, an affine function vy, : T'— R is uniquely determined by the nodal
values vy (2) for z € Kp. Therefore, the T-piecewise affine hat function (, defined by (.(z") = 9,/
is uniquely defined. We now show that (, € C(Q): If T,7" € T are elements with T N7T" # 0,
regularity of 7 implies that either T'=T" or {2’} = T NT" is a joint point or £ =T NT" is a joint
edge. In the latter case, note that the trace on E of the affine function (,|r as well as of (|7 is
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A
.

inflid,

F1GURE 3.3. Ezamples of P1 hat functions (,: The left figures show the mesh as well as the
support supp(C.) in grey, where the corresponding node z € K is indicated in red. The right
figures show the plots of the hat functions. Triangles T € T with (|7 = 0 are filled with white.

uniquely defined on the edge E by the nodal values (,(zg) and (.(yg), where E = conv{zg,yg}.
Therefore the traces of (|7 and (.|7» on E coincide, i.e., {, is continuous on each interior edge.

2. step. The nodal basis B is a basis of S'(7) and dim S*(7) = #K: Clearly, the hat functions
are linearly independent, B C SY(T), and #B = #K. Moreover, each function v, € S'(T)
is uniquely defined by the nodal values vj(z) for z € K and can thus be written as the linear
combination of the hat functions, i.e., S'(7) C span(B).

3. step. The inclusion S'(7) ¢ H(Q) follows from Exercise 15. |
Remark. Examples for hat functions (, are shown in Figure 3.3. Note that the support supp((,)
is always local. This leads to a sparse Galerkin matrix A, i.e., most of the entries of A are zero. O

For a given Dirichlet boundary I'p C T', we use the discrete space St,(T) to discretize the weak
form of the mixed boundary value problem. In case of I'p = I', we consider the space S& (7).

[\~
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Corollary 3.2. Let T be a regular triangulation of Q). Then, the space
SH(T) == {vn, e SUT)|Vze KNTp wp(2) =0} (3.11)
is a finite dimensional subspace of HL(Q) of dimension #{z ekK | z ¢ fp}. The space
So(T) :={v, € SHT)|Vze KNT wy(2) =0} (3.12)

is a finite dimensional subspace of H}(Q)) of dimension #{z ek ! z & F}.

Proof. We only need to show that vy|p, = 0 for v, € SH(T). Let # € T'p. According to
the regularity of 7, there is an edge E € &p such that x € E. Since the trace vy|p is affine,
it is uniquely determined by the nodal values v (z7) = 0 = v (yr), where E = conv{zp,yr}.
Consequently, v,|p = 0 for all E € &p and hence v, € H b(Q) In particular, we obtain the claim
for S}(T) in case of I'p =T. [ |

For the discretization of the Neumann problem, we are dealing with S1(T).

Corollary 3.3. For a reqular triangulation T of €0, the space

SHT) = {v, € SHT) | Jyvndz =0} (3.13)

is a finite dimensional subspace of HL(Q) of dimension #K — 1.

Proof. Clearly, it holds that S}(7") € H}(2). Note that I(vy) := [, vsda is a linear functional
on SY(T) with kernel S}(T) = ker(I). Since rank(I) = 1, Linear Algebra yields that dim S}(7) =
dim SY(T) — 1. [

The P1 Finite Element Method now consists of using the Galerkin method with the discrete
spaces S}(T), SH(T), and S}(T) to approximate the weak solution of the Dirichlet problem, the
mixed boundary value problem, and the Neumann problem, respectively. From now on, we shall
assume that 7 is a regular triangulation of 2. We start with the Dirichlet problem

—Au=f in Q,
u=0 onl,
for given data f € L%(2). The P1-FEM then reads: Find uj, € S}(T) such that
(Vuh 5 Vvh)Lz(Q) = (f 5 ’Uh)Lz(Q) for all vp € Sol(T) (3.14)
Second, the mixed boundary value problem reads
—Au=f in ),
u=0 onlp,
Ju/On =¢ onTy,

with T =TpUTN, Ip NIy =0, and [T'p| > 0. The data satisfy f € L?(Q2) and ¢ € L*(T'x). The
P1-FEM for the mixed BVP reads: Find uj, € Sh(T) such that

(Vun ;s Vou)rz) = (f 1 va)rz2i) + (65 0n) 2wy for all v, € Sp(T). (3.15)
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Finally, we consider the Neumann problem
—Au=f in Q,
ou/On=¢ onT,

where the data f € L?(Q2) and ¢ € L?(I") are assumed to satisfy Jo fdz+ [ ¢ds =0. The P1I-FEM
for the Neumann problem reads: Find uj, € S}(T) such that

(Vun ;s Vou)r2) = (f 3 vn)z2i) + (65 on) ey for all v, € SH(T). (3.16)
13
T T
Ty 15
® ®
FIGURE 3.4. Red-refinement refines the element T € T©9) into 4 similar elements Ty, ..., Ty €

T@ew) - The new nodes KON\KCD are just the edge midpoints for all edges E € £, In
particular, regularity of T©'Y) implies regularity of T W),

3.2 Approximation Theorem and Bramble-Hilbert Lemma

3.2.1 Uniform Mesh-Refinement and Shape Regularity
Let h € L*>(Q2) and p € L*>(Q2) denote the local mesh-width functions which are defined by

hlp := hy = diam(T) and p|r:=pr forallT €T. (3.17)
Moreover, the quantities
hT hT
T):=— d = ||h () = —2>1 3.18
o(T) = 25 and o(T) = /el () = max o > (318)

denote the shape regularity constant of an element 1" € T resp. the triangulation 7. Note
that |T'| = hror/2 so that 2hy/or = h2/|T|. The shape regularity constant will affect all error
estimates, so that mesh-refinement has to avoid a blow-up of o(7). We say that a regular mesh T
is v-shape regular, if o(7) < v < .

For this section, we stick with the so-called uniform mesh-refinement: Given a regular
triangulation 79, we obtain a new triangulation 7(™") as follows: Each element T € 719 ig
split into 4 similar triangles T1,...,Ty € T®™W) cf. Figure 3.4. Therefore, each node z € KW
either belongs to K(©' or is the midpoint of an edge E € £©!9) . We stress some simple observations:
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e The new triangulation 7™") is also regular.
e The local mesh-width functions satisfy h(®%) = pld) /2 and prew) = plold) /9,

e In particular, the shape regularity constant satisfies that o(7 (1)) = g(7(ew)),

Further mesh-refinement strategies are discussed in the following section.

Ezxercise 16. Let T = conv{zi, 29,23} be a non-degenerate triangle in R2. Prove that the
shape regularity constant hp/or tends to infinity if and only if the smallest angle in 7" tends
to zero. O

Exercise 17. Often, the shape regularity constant is defined as the maximal quotient hp /7,
where 77 > 0 denotes the maximal radius of a ball B(z,r7) := {y € R? | |z —y| < rp} inscribed
in T, i.e., B(z,rr) CT. Let T = conv{z, 22, 23} be a non-degenerate triangle in R?. What is
the relation between or and rp? O

3.2.2 Statement and Interpretation of Approximation Theorem

To state our first main result in this section, we need to know that certain Sobolev functions are
at least continuous.

Theorem 3.4 (Sobolev). Let Q be a Lipschitz domain in R and m > d/2. Then, there

holds the continuous inclusion H™(2) C C(2). |

In particular, for d = 2,3, each Sobolev function u € H?({2) is continuous so that evaluation
of u at the nodes z € K is well-defined. Throughout the remaining section, we assume that 7 is a
regular triangulation of a bounded Lipschitz domain @ C R?. We stress, however, that the same
results — even with the same proofs — hold for d = 3 as well. As in the previous section, the nodal
basis function corresponding to a node z € K is denoted by ¢, € S'(T).

Theorem 3.5 (Approximation Theorem). Foru € H%(Q), the nodal interpolant reads

L= u(z)¢: € SY(T). (3.19)

zeK

For all T € T, there hold the elementwise error estimates
lu = Inull 2y < C[|B*D*ull 127 (3.20)
and
IV (u — Inw)ll2(r) < Co(T) [|hD*ul| L2z, (3.21)

where the gemeric constant C' > 0 is independent of w, T, and €, but depends only on the
reference triangle. In particular, this proves for all a € R the global error estimates

1h* (u = Iyu)ll 2 () < C|W*F*D?ul| 2(q) (3.22)
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and

1RV (u — Iyu) || 20y < Co(T) [ D?ul| 2. (3.23)

Before the proof of Theorem 3.5, we discuss the following immediate consequence:

Corollary 3.6. For u € H*(2) N HA(SY), it holds that Inu € SL(T) and thus

' - <l|lu—1I < Co(T)|hD? . 3.24
vhglbnmllu vl ) < llu = Inull gy < Co(T) [hD%ul 12 (3.24)

Forw e H*(Q)NHL(Q), it holds that

min |lu—wv = min |u—v < ||lu = IThu
oty e = el = min ) lle=onll g < o= Dl (3.25)

< Co(T) |D?u] 20

In either case, the constant C > 0 depends only on diam(€2).

Proof. Let Cypx > 0 denote the constant from the approximation theorem. Then,
lu — [hu”?ql(g) = flu— [hUH%2(Q) +[IV(u— Ihu)”zm(g) < Cgpx(diam(g)z + U(T)Z)HhD%”Zm(Q)-
Since o(7T) > 1, we obtain that
Tl ) < Copw(T)(iamn(2)? + 1)V D% 125y,

For u € H*(Q) N HL(R), it holds that u(z) = 0 for all z € T'p. This implies that Ju € SH(T)
and hence (3.24). Before we prove (3.25), note that Iyu € S*(7) does not belong to S}(T) in
general. However, let P, : H'(Q) — S'(T) denote the H'-orthogonal projection onto S'(7). Since
1 € SY(7), it holds that

0= / udr = (u; Vi) = Pru; 1)) = / Pruds  for all u € HH(Q).
Q Q

Therefore, Pru € S}(T), and the best approximation property of the orthogonal projection P, thus
implies that

u — Pru = min |lu—v < min |lu—wv < ||lu—Ppu
[ null (o) o in [ rlla ) < in [ rlleo) <l null (o)
and hence equality. As before, this proves (3.25). [ |

Remark. Corollary 3.6 has two important consequences: First, according to Céa’s lemma, the
Galerkin error is up to a constant the best approximation error. For a smooth exact solution
u € H?(Q), the PI-FEM thus leads (at least and in fact even) to a convergence order O(h).
Second, C3y(Q) is dense in H,(Q) and C°(Q) := {v € C*(Q)| [qvde =0} is dense in HX(Q).
Corollary 3.6 therefore implies convergence of the Galerkin scheme on a dense subspace. The
abstract framework provides convergence of the P1-FEM even without any regularity assumptions
on u, cf. Proposition 1.7. O
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Ezercise 18. Use the Poincaré inequality and the Meyers-Serrin theorem to prove that C°(Q)
is dense in H1(Q). O

3.2.3 Bramble-Hilbert Lemma

It now remains to prove the Approximation Theorem 3.5. The proof of which needs three lemmata.
The first two lemmata provide the basis for general scaling arguments. We therefore state the
results even in a slightly generalized setting.

Definition. For a multiindex a € Ng and z € R?%, we define the monomial z® := H;lzl w?j , where

laf == 2?21 a; is the (total) degree of a. For a Lipschitz domain 7' C R?, we define
P™T) :={v:T — R|v is linear combination of monomials of degree < m} (3.26)

the space that consists of all polynomials of degree less than or equal to m € N.

Lemma 3.7 (Bramble-Hilbert). For a Lipschitz domain T C R? and a normed space X,
let A€ L(H™(T); X) be a linear and continuous operator with P™(T) C ker(A). Besides
the classical continuity estimate

[Avlx < [Al 0]l gmsrry  for allv € H™H(T), (3.27)
it holds that
|Av||x < C HAHHDmHvHLz(T) for allv e H™ (T, (3.28)

where the constant C > 0 depends only on m and T.

Proof. 1. step. Construct an equivalent norm on H™(T): Note that P™(T) is a finite di-
mensional space. Let II : L2(T) — P™(T) denote the L?-orthogonal projection onto P™(T). We
define

ol := 1D 0]l 2y + M|l g2y for v € BT,
From [[ITv||z2¢p) < [|v]|g2(7), we infer that
loll < 1ID™ ol L2y + 0l z2ery < V2 [0l mss (1y-
Next, we prove the converse inequality, i.e., there exists a constant C' > 0 such that
vl gmsr(ry < Cllvf| for all v € H™NT).

As above, we use the Rellich theorem and argue by contradiction: If the claim is wrong, we find
v € H™FY(T) such that lvnll grmt1(ry > nflvall. We define wy, := vn/||vn|| gm+1(7). Note that

1
lwnl|m+rry =1 as well as [Jw, || < -
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According to reflexivity, we may thus assume that w, — w € H™(T). According to Lemma 2.7,
convexity and continuity of || - || imply that [|w|| = 0. Therefore, it holds that D™ *lw = 0 as
well as I[Tw = 0. With the help of Exercise 19, we deduce that w € P™(T) and consequently
lwllz2(7) HHwHLz = 0. According to Rellich’s theorem, we have w,, — w =0 € H™(T'). Since
Dm“wn —0¢eL? (T) we even conclude that w,, — 0 = w € H™(T). This however, contradicts
[[wn || grm+1(ry = 1. Altogether, we have shown that || - || is an equivalent norm on H™!(T').

2. step. With the norm equivalence constant C' > 0 of step 1, it holds that
[Av][x = [[A(v = Tw)||x < [[A]l|lv = To|| gmsr(ry < C[|A]|lo = Tof| = C A [ D™ o]l p2ry

for all v € H™F(T). [ |

Ezercise 19. Prove that a function v € H™(T) on a bounded Lipschitz domain 7' C R?
satisfies D1y = 0 if and only if v € P™(T"). Hint: You should use the case m = 0 without
a proof, cf. Theorem 2.3. O

3.2.4 Scaling Argument and Proof of Approximation Theorem

Lemma 3.8 (Transformation Formula). Let T, T C R be Lipschitz domains. Let
() := Bx +y with regular matriz B € R and vector ye R? be an affine diffeomorphism
with ®(T) = T. For u € H™(T), it holds that uo ® € H™(T) with

[D™ (uo @) < | det BI7V2| B[ D™ ull 12(r). (3.29)

||L2(f)

where || B||F denotes the Frobenius norm of B. Moreover, for m = 0, there even holds equality.

Proof. 1. step. The case m = 0: According to the transformation theorem and D®(z) = B, it
holds that

ullF2 ) :/Tu2 dy:/f(uo(I))Q\detD@\dx: | det B [uo |, ~

2. step. To treat the higher-order case for smooth functions u € C*°(T), we first prove by induction
on m that for all j, € {1,...,d}, it holds that

d
8jy -+ 05, (uo®)( Z Y Ok, Oy HB,W, (3.30)

which is the special case of the Faa di Bruno formula (chain rule for partial derivatives): The case
m = 1 follows from the chain rule D(u o ®)(z) = Du(®(x))D®(x) = Du(P(z))B, where, e.g.,
Du(y) = (Ovu, ..., 94u)(y). Therefore,

(uo®)( Z@ku x))By;.
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Assuming that (3.30) holds up to m € N, we now prove the equality for m + 1:

d d m+1
!
dj, 051 (uo ®)(x) =05 ( Z .. Z Oy m+1 H Bsz>

ko=1 km+1:1

d d m—+1
= S 9,0k O u(@(@) T] B
ko=1 kmy1=1 (=2
| d d m+1
= Z Z Z Oy Ok~ m+1 u(®(z) Bklh H By,
ko=1 kmt1=1k1=1 =2
d d m—+1
_ Z Z 8}9181@ ---8km+1u(<1>(w)) H Bkejz?
k1=1 kmy1=1 =1

where we have used the induction hypothesis for m and the initial step m = 1. This verifies (3.30).

3. step. We apply the Cauchy inequality to (3.30) to see that

105, -+ 05, (w0 @) ( (Z Z |0y, - .akmu(cp(x))f)(zd: Zd:

k1=1 km=1 k1=1 km=1 (=1
d d d d m
- (Z = [ "'akmu@(x))\z) ( DD HB%)
k1=1 kmzl k1=1 km=1/¢=1
d m d
L (Z 3 o o)) (1Y )
1=1  km=1 =1 ky=1

where the last equality follows from another simple induction argument.

4. step. We prove the transformation formula (3.29) for u € C>(T):

|detB||[ D™ (u 0 D)2, /Z U3 (0505, (10 B) (@) det DB(a) e

7j1=1 IJm=1

(3 ZHZBMZ)(/Z

7J1=1 Jm=10=1ky=1 k1=1

Z\% - O, u( (x))ﬁdetD@(x)\dx)
km=1

_IID U‘HL2(T)

=l'[2"12‘ﬂ, 122‘3 1313[]‘@
= IBIF" 1D ullZ(r,)
5. step. We prove the transformation formula (3.29) for general v € H™(T): According to

the Meyers-Serrin theorem, C°°(T) is a dense subspace of H™(T). Note that (3.29) implies for
u € C®(T) the estimate |lu o (IDHHm(T < Clullgm (), where C' > 0 depends only on m and B.

Hence, Uu := u o ® extends uniquely to a linear and continuous mapping ¥ : H™(T) — H™(T).
For uw € H™(T), choose (up) C C>=(T) with u, — u € H™(T). By continuity of ¥, it holds that
Upo® = Yu,, — Yu in Hm(T) Moreover, according to step 1, it holds that u, 0® — uo® € LQ(T)
This implies that u o ® = Wu € H™(T), i.e., the (unique) extension of ¥ from C>(T) to H™(T)
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is, in fact, the composition. Moreover, the left-hand side and the right-hand side of (3.29) depend
continuously (with respect to H™(T')) on u. This and (3.29) for u,, € C*(T) prove that

1D (w0 @) a7y =l [|D™ (a0 @) 2y < lim | et B2 B2 D™l oy
= |det B2 | BIE D™ ull )

and conclude the proof. |

Lemma 3.9. ForT = Tiet the reference element and T = conv{zy, 22,23} C R? being a
non-degenerate triangle, we define

Op: Tt =T, Pp(s,t): =2+ B <i> , where B := (z2 — 21 23— zl) € R?X2, (3.31)

Then, it holds that |det B| = 2|T'| and

hr/V2 < ||Bllp < V2hr  as well as 071 /vV2 < |B™Y|r < V207! (3.32)

Proof. It holds that
|B||% = |22 — 21> + |23 — 21]* < 2h2.
Moreover,
1/2
2 = 22| < |25 = 21] + 22 = 21| S V2 Iz — 21 + 22 = 21 )* < V2Bl

In particular, hy = max{|zo — 21|, |23 — 21|, |23 — 22|} < V2||B||r. The transformation theorem
gives

1
§|detB|:|Tref||detB|:/ |detD<I>T|d3::/ dz = |T| > 0.
T

ref

Hence, 0 < |det B| = 2|T| = hror. In particular, B! as well as g;l are well-defined. It holds

that
_ 1 by —Dbi2 bi1 b2
Bl = for B= )
det B (—bm b o ba1 b2

In particular, this proves that

s _ UBle _ 1Bl
1B~ ||lr = = :

| det B| hror
and the second estimate in (3.32) follows from the first. [

Proof of Approximation Theorem 3.5. 1. step. Estimate on the reference element T r: Let
I,rff : H*(T,et) — PY(Tief) denote the nodal interpolation operator on the reference element. We
consider the operator

A:=1-I%: H*(T.) » H¥(T,) for k=0,1
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and observe that P! (T,et) C ker(A). To see that A is continuous, we estimate

£
[AV| g (1) < 0l E2(100) + BT V1 e (1)

Let 21, 29, 23 denote the nodes of the reference element. Since all norms on the finite dimensional
space P! (T,t) are equivalent, we use the Sobolev inequality to see that

15 0l e (1,5 < Cnorm ;max, |15 0(2)] < Coorml|9]loc 11 < CuormCaabotev 19|27 0)-

ey

Altogether, we obtain that [|Av| k7, ) < (1 + CrormCsobolev) ||| 2(7;,;)» Whence continuity of the
operator A. Consequently, the Bramble-Hilbert lemma provides a constant C,.; > 0 that depends
only on 7o with

|lv — I;rfoHHk(Tmf) < CrofHDz’UHLZ(T,ef) for all v € H*(T,e) and k = 0, 1.

2. step. Scaling arguments provide the estimate on each element T: Let ® = ®1 denote the affine
diffeomorphism from Lemma 3.9. Note that I}*!(u o ®) = (Iyu) o ®. Define v := u o ® and observe
that (u — Ipu) o ® = (1 — I'*)v. First, we apply the transformation formula to &1,

ID*(w = Tyu) || p2ery = 1 D*((v = L) 0 @) | 2y
< [det B~ 2B DF (v — I)l| 2 ()
< Cret| det BIY?| B BIID?0l| 2z,
Second, we plug-in v = u o ® and apply the transformation formula to ®,
1Dl 2 (13,0 = 1D (w0 ®)l| 2y < | det Bl 2| B[] Dul| 21
The combination of the last two estimates proves that
1D (w = Inw)ll 21y < Cretl| B MR BIFID?wl 127y < Crer 25727203077 | D*u| 12,
where we have used the geometric interpretation of || B||r and ||[B~!||r. This proves that
lu = Inull 27y < 2Cret P2 D0l g2y and ||V (u = Iyw) | 27y < 2% Crer o(T)[|RD%u| p2(7).

and thus concludes the proof. |

Remark. The proof of Theorem 3.5 shows that it is enough to assume u € C(Q) N H?(T), where
HYT) :={ue L*Q)|VT € T we H*T)} for k > 1. According to the Sobolev inequality, it
holds that H2(2) C C(Q) N H?(T). For the broken Sobolev spaces H*(T), we write Dfv for the
T -piecewise k-th derivative of v and, in particular, Vv = D}Lv for the T -piecewise gradient. O

Remark. We recall the procedure of a scaling argument for proving an estimate. To that end, let
D Tyt — T be the affine diffeomorphism with linear part B.

e First, transfer the left-hand side from 1" to T}er:
ID*0| L2¢ry = | D¥ (v 0 @7 0 @21 127y < |det BT T2 [ BHE [DF(v 0 @7)|| 2z,
~ |T| 07" || D* (v 0 1)l L2(1,.0);

i.e., derivative on the left-hand side give rise to negative powers of or.
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e Second, prove an appropriate estimate on the reference element Tf.
e Third, transfer the right-hand side from Ty to T
¢ _ _
)21 < V2| B||% 1D wl 2y 2= T2 by || D*w] 21,
|D(w o ®7)]| < | det B|
i.e., derivatives on the right-hand side give rise to positive powers of hArp.

Plugging everything together, proves the desired estimate. O

Note that the heart of the proof of the approximation theorem is the Rellich theorem and thus
a compactness argument. The following exercise shows that approximation results are necessarily
proved by use of compactness.

Ezxercise 20. Let X be a Banach space and Y be a normed space with continuous inclusion
Y € X. For h — 0, let X} be finite dimensional subspaces of X and I, € L(Y;X},) be a
continuous and linear operator with

lu — Ihul|x < Ch||ully foralluc,

where the constants C,a > 0 are independent of u and h. Then, the continuous inclusion
Y C X is already compact. O
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Chapter 4

A Posteriori Analysis

4.1 Introduction

We consider the model problem

—Au=f in Q,
u=0 onIp, (4.1)
ou/On =¢ onI'y.

Let u € H}(S2) be the weak solution of (4.1) and up, € SH(T) be the P1-FEM approximation of u.
In the previous chapter, we aimed to control the error ||u—uy|| (o) by a priori knowledge, e.g., reg-
ularity of the given data and the exact solution (but essentially independent of the discrete solution
up). Since u is unknown, in general, the a priori analysis provides a qualitative understanding
of the FEM, e.g., convergence with certain rates, but the derived bounds are non-computable in
practice. In this chapter, we aim to derive numerically computable bounds n = n(up, f, ¢, T) for the
error |lu—up| g1(q), which may depend on wy, the triangulation 7', and the given data f and ¢ (but
not on the exact solution u). The quantity 7 is referred to as (a posteriori) error estimator,
and emphasis is laid on the fact that 1 can be computed algorithmically as soon as the discrete
solution up, € St (T) has been computed. An error estimator 7 is called reliable provided that

lw = unll 1) < Cran. (4.2)

Usually, the information n provides, is used to steer a mesh-refinement that leads to a sequence
T¢ of regular meshes with nested spaces 811)(72) C Sll)(ﬁﬂ), i.e., Tpr1 is a certain refinement of
Te. If m is reliable the (numerically or algorithmically observed) decrease of 1 to zero implies the
convergence of uy, towards u. However, it might (formally) occur that u; tends to u, while n does
not tend to zero. Therefore, an error estimator n is called efficient provided that

Cer 1 < |lu — up| g1 (0)- (4.3)

For an efficient error estimator 7, the convergence of uy to u necessarily implies the convergence of
1 to zero. Finally, if 7 is reliable and efficient, we observe for n the same order of convergence as

for [|u — up || g1 (-

The aim of a posteriori error estimates is twofold:
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e We want to control the accuracy ||u — up||g1(q) of a discrete solution uy and stop the com-
putation if uy, is sufficiently accurate.

e The mesh-refinement should be steered automatically by the algorithm so that we are led to
the highest possible accuracy with the lowest number of degrees of freedom.

Remark. Throughout, we allow the cases I'p = T' as well as I'p = (. In the latter case, (4.1)
becomes the Neumann problem, for which we have to assume the compatability condition fQ fdr+
quﬁds = 0. Then, u € H!(Q) and, even more important, the test space H!(Q) in the weak
formulation can equivalently be replaced by the entire space H'(€Q). The same holds for the P1-
FEM, where u;, € S}(T) and where the discrete test is S} (7)) or equivalently S'(7). 0

4.2 Scott-Zhang Projection

Since H'-functions are in general not continuous, nodal interpolation requires additional regularity
assumptions. In this section, we aim to provide some quasi-interpolation operator which is well-
defined for all v € H'(2) and also has the projection property. We start with the following
elementary lemma

Lemma 4.1. For z € K, choose an edge E, € £ with z € E,. Then, there is a unique dual
function ¢, € PY(E,) such that

V,Crds =6, forall 2/ € K. (4.4)
E,

Moreover, it holds that ||, p~(g,) < C |E.|~t for some generic constant C > 0, which is in
particular independent of z and T .

Proof. According to the Riesz theorem, there is a unique function 121\ € P0,1] such that
1
/ VY odt = ¢(0) for all ¢ € P[0, 1].
0
Let @, : [0,1] — E. be an affine parametrization of the edge F, with ®,(0) = z. We define

1
P, = T

bod ! e PYE,).
Clearly, [ 1o (5.) < 1]l (0.1) [E-| " Note that [#] = |£.| and hence

1 1
/ ¢z<z’ ds = / (wz o (I)z) (Cz’ o (I)z) ’(I)/z‘ dt = / ¢(t) (Cz’ o (I)z)(t) dt = Cz’ ((I)z(o)) = Cz’(z)'
E. 0 0

This concludes the proof. |

Definition. For each node z € K of T, we choose an edge F, € £ such that

e £, CTpforzeTp,
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o £, CI for z €T,
e [, arbitrary for z € Q.

Note that the precise choice is immaterial for the following analysis. For z € K, let ¢, € PY(E,)
be the corresponding dual function. Then, the Scott-Zhang projection is defined by

Jpv = ZZGI:C </EZ Y, ds)Cz. (4.5)

Clearly, Jj, : H(Q) — S'(T) is well-defined and linear. Our first proposition states that Jj, is
in fact a projection which preserves discrete boundary data.

Proposition 4.2. Forv € HY(Q) and v, € SY(T), the following properties (i)-(iii) are true:
(i) thh = Up.
(i) (Jpv)|w depends only on the trace v|, for w € {I',T'p}.

(iii) v|y = vplw implies that (Jpv)|w = vy for w e {T',I'p}.

Proof. (i) Note that vy = Y ¢ vn(2")(r. By choice of 9., this shows

Yyup ds = Z vp(2) | .o ds = vp(2).

E. ek E.

With this, we deduce

Jpvn =Y _ (/E (CRY ds) G =Y wn(2) G = v

zeK zeK

(ii) follows from the choice of the edges E,. (iii) We consider only w = I'p. We first note that

(e, = 37 ( /E vowds)lr, = Y /E Yowds)Glr, for all w e H'(2),

zeK zeKNTp

For z € KNTp, it holds that E, C I'p and hence sz Yovp ds = sz ,vds. Together with the last
equation and the projection property, we obtain that

(Jnv)|lrp = (Jaon)lrp = valrp-

This concludes the proof. |

Ezxercise 21. Show that Lemma 4.1 holds for any dimension d > 2. O

Note that the Scott-Zhang projection J,v is not defined for general L2-functions, since L?(T)
does not provide traces. However, one can define an appropriate variant as follows:
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Ezxercise 22. Construct a linear projection Py, : L?(2) — S(T) which satisfies
o [|Pyllr2(0) < Cvllp2(q) for all v e L*(5).
e Pyu, = vy, for all vy, € St (T)

The constant C' > 0 may only depend on (7). Hint. Proceed as for the standard Scott-Zhang
projection. Instead of an edge F,, associate with each node z € K an arbitrary element T, € T
with z € T5,. O

Next, we aim to show that the Scott-Zhang projection has local stability and approximation
properties. Unlike nodal interpolation, this will require appropriate patches.

Patch 2, of a node z € K Patch Qg of an edge E € £ Patch Qp of an element T € T

FIGURE 4.1. For the a posteriori analysis, we need three types of patches w C ), namely patches
of nodes, edges, and elements, respectively. Note that the patch of an edge (or of an element) just
is the union of the patches of its nodes.

Definition. For the a posteriori analysis, we need certain unions of elements, called patches, cf.
Figure 4.1: For a node z € K, we define

Q. ={TeT|zeKr} aswellas Q.:=|J% :={zeR?|IT Q. 2T} (4.6)
For an edge E € &, we define
Op ={TeT|KenT#0} ={T€Q.|zeKp} aswellas Qp:=|J0%.  (47)
Finally, for an element 7' € 7, we define
Or ={T"eT|KrnT' £0} ={T"€Q.|z€Kr} aswellas Qp:=|JQr.  (48)

The patches Q2,, Qg, and Qp are visualized in Figure 4.1.

Lemma 4.3. There is a constant C' > 0 which depends only on o(T), such that
° #ﬁngforallzelC,
o #Qp < C for dll E € €,
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o #Qp < C forall T €T,
i.e., the number of elements per patch is uniformly bounded. Moreover,
o #{T'eT|T€Qp}<C foralTeT,

i.e., an element T € T belongs only to finitely many patches.

Proof. Note that o(T) provides a bound for the minimal interior angle of all elements T' € T;
see Exercise 16. Consequently, there is a maximal number C' > 0 of elements in €2, for all nodes
u € K. By definition, there follows #Qp < 2C as well as #Qp < 3C. [ |

An essential consequence of Lemma 4.3 is that
2 1/2 2
[l 22y < (Z HUHLz(QT)) < Cpaten [v]|2(q)  for all v € L5(Q),
TeT

where Cpatcn > 0 depends only on o(7). Another consequence of Lemma 4.3 is that the diameter
diam(Q7) of a patch is proportional to hy = diam(7"). This is stated in the following lemma.

Lemma 4.4. For a reqular triangulation, it holds that
o diam(Q.) < Chy forallz € K and T € Q.,
o diam(Qp) < Chy < Chy for al E€ & and T € Qp,
o diam(Qp) < Chy for all T € T and T € Q.

The constant C > 0 depends only on o(T).

Proof. 1. step. Note that hy < o(T)or < o(T)hg for all T'€ T and all edges FE € Erp.
2. step. Patch of a node z € K: For ﬁz = {T1,...,T,}, we may choose a numbering such

that T;_1,Tj are neighbours, i.e., T; 1 NT; € €. From step 1, we derive hy,_; < o(T)hr;, whence
hyr < o(T)" thy for all T,T" € Q.. This yields that

diam(€2.) < 2 max hyr < 20(T)" *hy for all T € Q..
T'eQ,

3. step. Patch of an edge £ € & With F = conv{zl,zg} for some 21,22 € K, it holds that

Qp = Q., U, as well as ., N QZ2 #0. Let T € Qp and n := = max{#.,, #Q.,}. Without loss
of generality, we may assume 7' € €2,,. Choose T" € Qzl N QZQ Then,

diam(Qp) < diam(€2,) + diam(Q,,) < 20(T)" (b + hyr) < 20(T)" 1A + o (T)" Y hr.
4. step. Patch of an element T' € T: Simply use the same arguments as in step 3. [ |

The Scott-Zhang projection is locally H'-stable and has a local first-order approximation prop-
erty.
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Proposition 4.5. For oll T € T, it holds that

v — Jnvllz2ry + hrl[VIpvll ey < Chr [[Vollp2qpy  for allv € HY(Q). (4.9)

The constant C > 0 depends only on y-shape regqularity of T .

The proof requires the following technical lemmata which are also valid in any dimension d > 2
as the proofs reveal.

Theorem 4.6 (Trace Inequality). Let T = conv{z,...,2q} C R? be a simplex in R with
|T| > 0 and diameter hy := diam(T). Let E = conv{zi,...,zq} denote one particular side of
the simplex. Then, for v € HY(T), it holds

) )
el + 2 rloWolonn) < 120+ 2/ ol (410

ol m) <
With the integral means vy := |T|™ [ vdz and vg == hy;' [, vds, it holds that

B 17
7]

lv = vElZ2(m) < v —vrl72m < C IV 0|27 (4.11)

where C' > 0 depends only on the reference element Trof and the dimension d.

The proof of the trace inequalities (4.10)—(4.11) is done with the help of the following lemma.
In particular, We shall that that both estimates are sharp. Note that, for d = 2, it holds that
[E|/|T| < 207" and |E| 3,/|T| < 20(T)hr.

Lemma 4.7 (Trace Identity). Let T = conv{zp,...,z5} C R? be a simplex in R? with
|T| > 0. Let E = conv{zy,...,2q} denote one particular side of the simplex. Then,

wds = — /wdaz—i— / -Vwdz 4.12
rE\/ ] [T (4.12)

for all w € CY(T).

Proof. We apply the Gauss Divergence Theorem to the function f(x) := w(z)(z — z9). With
div f(z) = Vw(z) - (x — 20) + dw(z), we obtain that

d/dew—F/T(w—zo)-Vw(m)dx:/Tdivfdx: aTf-nds.

Note that (z — 29) - n(z) = 0 for z € OT\E, whereas (z — zg) - n(z) = dist(zo, H), where H C RY
denotes the hyperplane with £ C H. Therefore, the boundary integral simplifies to |, orf nds=
dist(zo, H) || pwds and the latter equality reads

dlst dist(zo, H)|E| /
wdr + —— / -Vwdzx
IT] / d|T| - d1 E
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which holds for any w € C*(T). The special choice w = 1 can be used to determine the w-

independent constant w = 1. This concludes the proof. |
Remark. Note that Lemma 4.7 holds for any w € Wh(T) := {w € LY(T) weakly differentiable
| Vw e LYT }, even with the same proof. O
Proof of Theorem 4.6. According to standard density arguments, it suffices to consider

v € CYT). Plugging w := v? € C}(T) into the trace identity (4.12), we see that

vl ds = — /v dr + —— —20) - (20Vv) dx.
w0 = T J, =) @)

This is rewritten in the form

T 2
]‘E’\ 122z = l0ll72¢ry) + p /(95 —20) - (vV) da < ||v]|Z2(p) + > hT||UVUHL1
T
<1+ 2hT/d) 1ol Z ¢

which proves (4.10). For the proof of (4.11), we simply replace v by v — vy and apply the Poincaré
inequality. This leads to

E 2
lo = vr |22 < %(HU —or|Z2(r) + p hrllv = vrll 2y IVl 20
- Bl 2
]T\ (CPRZIIV Ol T2 () + ECPh%”VU”%Q(T))
— (3 + 20p/a) ELE

T

The remaining estimate [[v — vg| 2z < [[v — vpll[2(p) follows from the L2-best approximation
property of the integral mean. [ |

Lemma 4.8 (Generalized Poincaré-Friedrichs inequality). Letve H'(Q), T e T,T' €
Qr, and E' € Ep. Define the integral means vy := (1/|T|) [pvdx, vp = (1/|T'|) [7 vdz,
and vy := (1/|E"|) [ vds. Then,

lvr = vl L2y + lve = verllz2(r) < Chrl|Vol 29y (4.13)
In particular, this implies that

v —vrll2p) + v —verllz2@r) < Chrl|Vollrzo,). (4.14)

In either estimate, the constant C > 0 depends only on ~y-shape reqularity of T, but is inde-
pendent of € and the shape of Q.

Proof. To ease the notation, let vg := (1/|E|) [ vds also denote the integral mean over edges.
Let Tief denote the reference triangle and Epof = [0, 1] be the reference edge of Tief.
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1. step. For any w € H'(T), it holds that |wr — wg| < Cye [Vwl[z2(7, ), where Crer > 0
depends only on shape regularity: With the trace inequality (4.11) on 7', we see that

wr — wg| < |BI™ Jw —wrllpym) < BT |w = wr | p2(m)

<C ey

UAE IVwl| g2y =: C|[Vwl|r2(r)

2. step. For all T,7" € T with E := T NT’ € &, shape regularity and the triangle inequality
yield that

lor = verll2ery = TV lor — v | S |TV2 or — vpl + TV |vp — vr/|
= |lvr —vEllL2(r) + llvr — vEl L2017

With Step 1, we thus see that
|vr —vrl L2y S hrl|Vollpziry + e[Vl 20y S P [IVOll 2oy s

where the hidden constant now depends on C' > 0 from step 1 and from shape regularity of 7.

3. step. If TNT' # (), there is a minimal n € N and elements Ty,...,T, € T with Ty = T,
TjNTj—1 €& and T; CQp for all j =1,...,n, and T,, = T’. Note that n is uniformly bounded in
terms of the y-shape regularity of 7. Iterating the argument from Step 2, we conclude (4.13) with
U;L:() T; € Qp. The overall constant then depends on C' > 0 and 7.

4. step. For each element T” € Qp, the Poincaré inequality and (4.13) show

v — vl L2y + lv — vEr || L2 ()

S v —vrrll g2y + lor — vl 2y + llor — vre || L2y + o1 — vErl| 2
~ |[v —vrr |2y + llvr — o1 L2y + llvr — vrell 2y + lor — vEr |l L2y

S b (V|| g2y + By |Vl L2

S hr [[Voll 2y

Summing this estimate over all 7" € Qp, we obtain that

v = v 2 + 10 = vErl2(00) S hr VYl L2000,
where the hidden constants depends only on «-shape regularity of 7. |

Proof of Proposition 4.5 (H!-stability). For z € K, let E, C T, € T and h, := diam(T}).
Note that T, C Qp for z € T. The trace inequality (4.10) yields that

0172z S Bz (1ol Zeey + Pe 0l 2@ V0l 2y) S Bt (10l 20y + 22 V0172 (r,)
With this and Lemma 4.1, we see that
| [ ods| < Wl Iolla sy S 12 ol

SUE 2RV (ol pogry + el Vol 22 -
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For any hat function, an inverse estimate shows
VG2 S hpt 1 2y < 1T 2hgt
Together with |E,|h, ~ |T.| ~ |T| and h, ~ hp, we therefore obtain that, for all v € H'(Q),
IV Tl < S0 / oo ds|IVGlzmy § Y (0 ol + I 9olzry).  (415)
- Lékor 2eKNT

With the integral mean vy := (1/|T'|) [, vdx and the projection property Jyvr = vy, we apply the
last estimate for w := v — vy and see that

IV Twollzaery = IV Ia(@ = on)llreery S D (b v = vrllreer) + IVllreer,))-
zekNT

According to the Poincaré inequality and Lemma 4.8, it holds that for all z € X NT,

v —vrllrem) < v —vrli2m) + v —vrlleemy S e VOl L2 (4.16)
Combining the last two estimates, we thus conclude ||V Jyv|2(ry S VY|l 220, [

Proof of Proposition 4.5 (approximation property). We adopt the notation from the proof
of local H!-stability. Arguing as for (4.15), we see that

|Jhvllp2(ry < Z / (CR) dS‘HCz”m Z (1ol 2¢ry + Rz VO 2¢7y) - (4.17)
zekKNT zekNT
With the integral mean vy := (1/|T'|) [, vdx and the projection property Jyvr = vy, we apply the
last estimate for w := v — vy and see that
o = Jnvllr2ry = [[(v —vr) = Jp(v —vr)ll L2
< [lv —vrlzery + [[Jn(v —vr)|lL2(1)

Shr Vol + Y (v —vrllzzm) + b Vol z2er))
zeKNT

Finally, we employ (4.16) and h, =~ hr to conclude |[v — Jpvl| 2y < hr [Vl L2(00)- [

The following theorem concludes the main properties of the Scott-Zhang projection:

Theorem 4.9. The Scott-Zhang projection Jy, : H () — SY(T) has the following properties
(1)—(vii):
(i) Jy is linear and continuous with respect to the H'-norm, i.e.,

| Jnvl| ) < C (1 + diam(Q)) [[v]| g1y  for allv e HY(Q). (4.18)

(ii) Jy, is a projection onto S'(T), i.e.,

Jyop, = v, for all vy, € SYT). (4.19)
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(iii) J preserves discrete boundary data, i.e., for w € {I'p,T'} it holds that

(Jp0)|w = vw for all v € HY(Q) with v|, € SYT|,). (4.20)

(iv) Jy is locally H'-stable, i.e.,

IVIpollpziry < CIVVllr2py  forallv e HYQ) and T € T. (4.21)

(v) Jp, has a local first-order approximation property, i.e.,

(1 = Jp)vll2(ry < Chr||[Vullp2py  for allv e HYQ) and T € T. (4.22)

(vi) Py is quasi-optimal in the sense of the Céa lemma, i.e.,

(1= Jn)v[l o) < C(1 + diam(€2)) Hé‘ilI%T) v —vpllgr) for allv e HY(Q). (4.23)
(NS

(vil) For all a € R, Jy, is quasi-optimal in the sense of

[PV (1 = Jn)vll 2 < C g}sln [PV (0 = vn) | L2 ()- (4.24)

The constant C' > 0 in (1)—(vii) depends only on ~y-shape regularity of T .

Proof. (ii)—(v) have already been shown, and (i) is a direct consequence of (vi) and the triangle
inequality. (vii) Let v, € S'(7). With the projection property of J, and (iv), we see that, for all
TeT,

V(L = Jp)vll2ry = IV = Jp) (v = vp)ll2(r) S V(v = vi)ll 204
With v-shape regularity and hence hp ~ hy for all T" C Qp, we infer
[V (1 = Jp)vll L2y S 1AV (v = vi)ll 22 0g)-

Using the y-shape regularity again, this results in

1RV (1 = Jn)ol| 72 () = > pev (= o YollZzry S > pev(w - o2
TeT TeT

SRV (v — Uh)H%%Q)-

This proves (vii) with an infimum on the right-hand side. Due to finite dimension, this infimum is,
in fact, attained. To prove (vi), it remains to estimate the L2-part and use o = 0 in (vii). With
the projection property of J, and (v), shape regularity yields that

(1= Tn)vlZe ) = D 10 =T =on)lFemy S D B2 IV = vn) 172000
TeT TeT

< diam()? [ V(0 — v) 2 -
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Altogether, we thus see that
10 = ol S (1 -+ diam(Q)2) [V — o)y S (1+ diam(@))2 [[v — val 21 g,
This concludes the proof of (vi). [

Remark. Theorem 4.9 holds for any dimension d > 2 and for any fixed polynomial degree p > 1.
O

One drawback of the Scott-Zhang projection is that it is not positivity conserving, i.e., v > 0
does not necessarily imply that Jpv > 0.

Exercise 23. Suppose that T is a regular triangulation of Q := [0,1]? into 2 triangles. Find
an example of a function v € HAl(Q) with v > 0 such that there exists some z € 2 with Jyv < 0.
Hint. Compute the function ) € P1(0,1) from Lemma 4.1 explicitly. O

Exercise 24. Extend the approach of Exercise 22 and construct an operator P, : L?(2) —
SH(T) with the following properties:

(i) Py : L*(2) — SL(T) is a well-defined linear projection,

Py, = vy, for all vy, € SH(T).

(i) Py is locally L2-stable, i.e., for all T' € T, it holds that

(1= P)oll2ery < C lloll 2y for all v € LA(Q).

(iii) P, is locally H}-stable, i.e., for all T € T, it holds that

V(1 = Pu)vllzzry < ClIVollp2,) forallve HL(Q).

(iv) P has a local first-order approximation property

(1 = Pr)vllp2(ry < Chr [Vl g2,y forallv e HL(Q).
(v) Pn: L%Q) — L*(Q) as well as P, : H,(Q) — H}(Q) are bounded linear operators.
(vi) Jp is quasi-optimal in the sense of the Céa lemma, i.e.,

(1 = Pl < C min v —vnllgr) forallwve HL(Q).
UhESD( )

(vii) For all @ € R, Py is quasi-optimal in the sense of

[A*(1 = Pp)vll2() < € min : [A%(v — vp)l| 2@ for all v e L3(Q).

Vp, ESID(
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(viii) For all € R, P}, is quasi-optimal in the sense of

RV (1 = Py)vllp2y < C min_ [[h*V(v — vy)||12(q) for all v € Hp ().
thSID(T)

The constant C' > 0 in (i)—(viii) depends only on ~-shape regularity of 7. Hint. Let Kp :=
K\I'p denote the free nodes, where possibly Kr = K for I'p = (). Then, P, can be chosen as

Po=Y" (/ mpzda;>gz

zeEKp Tz

with appropriate T, € T and 1, € P (T}). O

Definition. The Scott-Zhang projection is just a special example of a Clément-type quasi-
interpolation operator: We say that an operator J, : Hp(Q) — SL(T) is a Clément-type
quasi-interpolation operator if, for all v € H})(Q) and all T" € T, it holds that

e it is locally H'-stable

IV = Jn)ollzry < ClIVllar), (4.25)
e and has a local first-order approximation property

(1 = Jn)vllr2ir) < Chr [[Voll 2 (o). (4.26)

The constant C' > 0 may only depend on y-shape regularity of 7 (and possibly the shapes of
possible patches in T).

For the a posteriori error analysis, we shall need the following simple consequence.

Lemma 4.10. Suppose that Jy, : H5(Q) — SH(T) is a Clément-type operator, i.e., (4.25)—
(4.26) hold. Let T € T and E € Ep. Then, it holds that

(1 =)o)l 2y < ChL |Voll oy for all v € Hb(R). (4.27)

The constant C > 0 depends only on y-shape regqularity of T .

Proof. We apply the trace inequality
[wlZ2 gy S bt (lwllZzqy + br w2y Vel 2i)
for w = (1 — Jy)v € H}(Q). With the Clément properties (4.25)—(4.26), this yields that
11 = Tn)ollfzm) S brIVOll72 0,
Shape regularity and hence hp ~ hp concludes the proof. [ |

The following example is one further classical example of a Clément-type operator. The analysis
will be left to the reader, but requires the following simple observation:
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Ezxercise 25. Use a scaling argument to show that
C™hy Vol poo(r) < [Vonllzery < f LIVl ooy for all vy, € P™(T),

where the constant C' > 0 only depends on o(7) and the polynomial degree m € Nj. O

Ezxercise 26. Let Kp := IC\TD denote the free nodes (where possibly Krp = K if T'p = ).
Define

1
Jpv = Z v,(, with wv,:= W/ﬂ vdz, (4.28)

zEKR

where €, C Q denotes the patch of a node z € K. Prove that J), satisfies the following
properties:

(i) Jn: L2(Q) = SH(T) is a well-defined linear operator.
(ii) Jy, is locally L2-stable, i.e., for all T € T, it holds that

(1 — Jh)vHLz(T) <C HUHLz(QT) for all v € L*(9).

(iii) Jp, is locally Hj,-stable, i.e., for all T € T, it holds that

IV = Jn)vll2ry < ClIVoll2py forallve HL(Q).

(iv) Jp has a local first-order approximation property

(1 = Jn)vll 2y < Chr [[Vvll g2,y  for all v € Hp ().

(v) Jp: L2(Q) — L*(Q) as well as J;, : H5(Q) — H5(Q) are bounded linear operators.
(vi) Jj is positivity preserving, i.e., Jyv > 0 for all v € L?(Q2) with v > 0.

(vii) With TI, : L*(Q) — PY(T) the L2-orthogonal projection onto P°(T), it holds that
JpIly = Jp,.

The constant C' > 0 depends only on «-shape regularity of 7. O

FEzxercise 27. Find a counter example which shows that the operator J;, from Exercise 26 is
no projection, i.e., it holds that Jyvj, # vy, for some v, € SH(T). O
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4.3 Residual-Based Error Estimator

Residual-based a posteriori error estimates follow a general strategy. Recall that the weak solution
u € HE(2) of (4.1) solves the variational form

(Vu ;s Vo)ra) = (f 5 v)r2@) + (95 0)2(ryy forallv e HL(Q). (4.29)

For an approximation uj, € Sh(7T) it is thus natural to define the residual R;, € H},(Q)* by

Rp(v) == (f 5 v)r200) + (65 0) 20y — (Vun 5 VU) 2, (4.30)
i.e., Ry, =0 if and only if up, = u. Let [Jw[| := [[Vw| 12(q) denote the energy norm on H}(§2) and
O (w
joll. = sup T

weHL(2)\{0} llwll

the induced operator norm on Hp,(€2)*, where we stress that both are equivalent norms on H} ()
and its dual space, respectively. Then, the Riesz theorem and R (v) = (V(u—up) ; Vv)12(q) yield

I Bnlls = llw — uall-
To derive a reliable error estimator 7, we thus need to prove an estimate of the type
Ry(v) < Cran |l for all v € H) (). (4.31)
To derive an efficient error estimator 7, we need to show
Ru(v) > Cegn|lv]| for some v € H}(Q)\{0}, (4.32)

where this v € H})(Q) has to be constructed appropriately.

Ezercise 28. Prove that reliability (4.2) of an error estimator 7 is, in fact, equivalent to (4.31).
Prove that efficiency (4.3) of 1 holds if and only if (4.32) holds. a

So far, our observations did not use that we are dealing with Galerkin schemes. We stress that
the Galerkin orthogonality reads

Rp(vp) =0 for all v, € SH(T) (4.33)

with respect to the residual Rj. To provide a reliable (and residual-based) error estimator 7,
we will use some Clément-type operator Jj, : H'(2) — Sh(Q) in connection with the Galerkin
orthogonality (4.33).

Before introducing a first a posteriori error estimator, we introduce the following notational
conventions. We define the T-piecewise resp. £-piecewise constant mesh-width functions

hT‘T = hT and hg‘T = hE
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for elements T € T and edges FE € &, respectively. Moreover, we write

1/2
10 *9lzaieny = (3 el

Ee&.

for any set £ C & of edges and any function 1 which belongs to L?(E) for all E € &,. Recall
that £p and &y denote the Dirichlet and Neumann edges of 7, respectively. Moreover, let &g
denote the set of all interior edges, i.e., for F € £, there are unique elements TE T € T with
E=T }'3" NTy. Finally, for E € £q, we define the jump of the normal derivative by

8uh 8uh
O =—+—€R, 4.34
[Onun]z ong  ong (434)
where n% denote the outer normal vectors of the elements Téf on the edge E. Note that n;g = -np
so that the sum in the definition is, in fact, a difference.
Theorem 4.11. The error estimator
1/2 1/2 1/2
0= (b7 fiP2aq) + 108 Onunl22ey) + 108 (6 = Onun) 122gey) (4.35)
satisfies the reliability estimate
|u—unllgr @) < Cn, (4.36)
where the constant C > 0 depends only on ~y-shape reqularity of T .

Proof. For all w e H b(Q), elementwise integration by parts proves

Rp(w) = (f 5 w)p2) + (¢ w)rzry) — Z (Vup 5 Vw) 27

TeT
=(fiw)pao+ Y (¢:w)rem — > (Ontn s 0)12a7)
Eeén TeT
= Z(f ; w)L?(T) + Z (¢ — Onup ; w)L2(E) - Z ([Onun] ; w)L?(E)
Ter Ecéy Eeto
<O ey lwllzzay + D ¢ = dnunlrzmylwllzzg + D 0nunlllr2eyllwll 2.
TeT Eecén Ec&q

For arbitrary v € H}(£2), we now choose w = v — Jyv and note that Rp(v) = Rj,(w) according
to the Galerkin orthogonality. Then, we estimate the three sums separately. The approximation
property of the Clément-type operator .J, and Lemma 4.3 imply

/ /
S Wz lio = Dol S (3 Wr e (3 19012y )
TeT

TeT TeT 2 » 2 s
S (X 0 fBery) (2 190122y
TeT TeT

= A7 fll2@ IVl 220
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For each edge E € &£, we choose an arbitrary element Tp € T with E € &p,. Let & C &£ and

Y € L*(E) for all E € &,. Recall that [|(1 — Jn)vllr2e) S hz/z ||VU||L2(QTE). Therefore, the same
arguments as before prove

/ /
S llmlle — vl < (30 10E200Rem) (3 190130y,)

Ee&. Eeé. Ee&.

1/2
S g9 2 ey

Vol L2,

where we note that an element 1" € T may satisfy 1" = T for at most three edges. Altogether, we
now see

Ru(v) S 1Vl 220y (Ih7 Fll 2 + Mg 2 0nunlll o) + 178 (6 — Ouun) | r2en))
< V3|V 20y 7.

The hidden constant C' depends only (on the Clément operator J, and) on vy-shape regularity of
T. |

Remark. Note that we have used uj, € S'(T) in the sense that the elementwise Laplacian satisfies
Auplp = 0 for all T € T. For general T-piecewise polynomials, the same proof applies with

|h7 fll 22 replaced by (A7 (f + Aup) L2 (q)- O

Exercise 29. We consider the mixed boundary value problem

—Au=f inQ,
u=up onlp,
Opu=¢ onlI'y.

with inhomogeneous Dirichlet data up € HY/?(I'p). Let u € H'(Q) denote the weak solution
and uy, € S'(T},) the P1-FEM solution for discrete Dirichlet data upy, := @ipp|r, with ip, €
SY(T3). Use the additional problem

—Aw=0 in Q,
w=up —upp onlp,
Opu =0 on I'y.
with weak solution w € H'(Q) to derive a reliable error estimator for |lu — uy| H(Q)-

Hint. Prove that ||w||g1q) = [|lup — upnlg1/2(r,,), Where the right-hand side is already an

a posteriori term. Then, consider the residual R, € HE(Q)* corresponding to the function
(u—up) —w € HH(R). O

Next, we prove the efficiency of the residual-based error estimator n from (4.35) — at least up
to terms of higher order. The efficiency estimate even holds locally with refined patches wg and
wr shown in Figure 4.2: For an interior edge F € £q, let TE , Ty €T be the unique elements with
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Patch wg of an edge E € £ Patch wr of an element T € T

FIGURE 4.2. To prove the efficiency estimate, it suffices to consider smaller patches wg C Qg
and wp C Qp, for edges E € € and elements T' € T, respectively. For comparison with the larger
patches Qi and Qr, the reader may consider Figure 4.1 on page 40.

E = Tg NTy . For a boundary edge E € &r, there is a unique element T € 7 with £ € E7,,. We
define the refined patch of an edge F € £ by

THUTs for £ € &,
wpi={ BB o (4.37)
Tg for £ € &p.

Moreover, we define the refined patch of an element 7' € T by
wr = U {wE | E e 5T} (438)

Note that wp C Qp and wr C Qp, so that Lemma 4.3 and Lemma 4.4 even hold for the refined
patches.

Usually, one is interested in error estimators which are localized with respect to the elements
or the edges of T, respectively. For instance, one considers the element-based residual error
estimator

1/2
mra=(ond) " (4.39)
TeT
where
1/2
e = (B2l I72cr) + Prl0nunllizzorag) + hrlé — dnunlZ2orary)) / (4.40)

or the edge-based residual error estimator

= (2m)" (141)

Ec&
where
1/2
(W21 11220y + Bl [Owun] |22 1) for E € &q,
e = (Bl 32,y + hEld — Onunll3a ) ®  for B e gy, (4.42)

for F € Ep.
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Alternatively, one could also define

nTuE = ( S+ U%)lﬂa (4.43)

TeT Ee€
where
nr = hTHfHL2(T)> (4.44a)
hl* 10nunlll 2 gy for E € &,
e = h1113/2 ¢ — Onunll 2k for E € €y, (4.44b)
0 for £ € &p.

Note that n7 as well as n¢ are equivalent to the error estimator 1 from (4.35): There holds
n=mnrue <Nr < \/50(7@)1/27] as well as  o(T) "1 <ne <V3n,

since ny adds the contributions of interior edges twice and hy < hp < o(Ty) hg for each edge
E € &Ep, whereas ng adds the element contribution at most three times. The local quantities
nr and g can be used to steer an adaptive mesh-refining algorithm. They are therefore called
refinement indicators. We are going to discuss adaptive mesh-refinement below.

Theorem 4.12 (inverse estimate). For all polynomial degrees m € N and k,r € N with
k > r, there exists a constant C > 0 such that

HDkvhHLz(T) < Co(T) hrT_kHDthHLz(T) for all v, € P"(T) and all T € T, (4.45)

where P™(T) :={v, : Q> R|VT €T wylp € P™(T)}.

Proof. The proof is done T-elementwise and follows from a scaling argument. We start with an
abstract observation.

1. step. Let X be a finite dimensional space, || - | x be a norm on X and |- |x be a seminorm
on X. Then, there exists a constant C' > 0 such that

lz|x < C|z||x forallxze X:

We consider the quotient space X/Y, where Y := {z € X ||z[x = 0}. Note that X/Y is finite
dimensional and that

lz+ Yl x/y Z}gyllerZ/\IX as well as |z +Y|[x/y ;IelyleryIX |lz]x

are norms on the finite dimensional space X/Y. Therefore, there is a norm equivalence constant
C > 0 such that

lz|x = [z +Y|xy <Cllz+Y|x/y <Cllz|x forall z e X.
2. step. There exists a constant Cpor > 0 such that

HDkwhHL2(TrCf) < Crof”DrwhHL%Tmf) for all wy, € Pm(TrOf).
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This follows from the abstract framework for X = P (T ef).

3. step. Proof of the statement: Let ® : Tt — T be an affine diffeomorphism and B € R?*?
its linear part. We apply the transformation formula to ®~! to see that

1D* 0l p2(ry < | det B™H 2 BTHIEID" (v, © ) g2 )

Note that the L?-norm can be estimated by step 2 since vj, o ® € P™(T}et). The application of the
transformation formula to ® proves that

ID" (vn, © ®)| 227,y < | det Bl B[ D" vn | r27-
By definition of the shape regularity constant o(7), we obtain that

ID"onllL2(ry < Cret | B IEIBIIFI D vnll 21y < V2 Creror" B | D vnl| 2z
< V2 Clef U(T)hrT_k”Drvh”L%T)a

where we have used that [|[B~!||p < v/2 07" This concludes the proof. [

Theorem 4.13.  We define fr € PUT) by frir == [T|"" [, fdz and ¢ € P°(En) by
oclp = hEl fE ¢ ds. For each element T € T, the refinement indicator ny from (4.40) satisfies

1/2

1 < C(IV (= un) 22y + IR (F = F 220y + 10826 = S6)2207ry)) (4.46)
Moreover, the error estimator n from (4.35) is efficient in the sense that
0 < C (lu—=unllm@ + I7(f = Fr)lz) + Ih* (@ = de)l2ey)-  (447)

The constant C' > 0 only depends on the shape regularity constant o(T).

Remark. For f € H'(T) holds ||hr(f — f7)ll2) = O(h%). For ¢ € C'(Ex) holds [|hy* (6 —
be)ll2ry) = O(h*/?). Even for u € H?(Q), the error as well as the error estimator 7 only satisfy
|w — unl| g1 () = O(h) = n. Therefore, the two terms on the right-hand side are of higher order. O

Proof of Theorem 4.13. 1. step. Estimate (4.47) is a consequence of (4.46) since
1/2
n<nr= (> n3) " <20 (lu—unllme) + 107 (f = Fllzz) + 106 = de)l2ry))-
TeT

Here, the factor 2 = 41/2 appears since each element T € T belongs at most to four patches wy.

The proof of (4.46) is split into three steps, where we consider each of the three contributions
of nr separately.

2. step. There holds

b7 fllzery < C(IV(w—wn)ll 2oy + b (f = Fr)llezer)) - (4.48)
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For T' € T, we define the element bubble function

= [[ &€ H(T)nP¥(T)

zeKr

as product of all three hat functions. It is essential to observe the following estimate

1f7brllz2ery < by ey < I Frllzaey < Cretll frbrllzeey, (4.49)

where the existence of an independent constant Cles > 0 follows from a scaling argument. We
stress, however, that || f7br| z2(r) and hence Cret — since fr is constant on 7' — can explicitly be
computed. In the following, the main idea is to use integration by parts for v := frbp € H& (T) to
show

refoT”L2(T <HfTb ”Lz(T (friv)ea =1 — [0 + (f = Aup 5 0) g2y
= (fr — i)z + (V(uw—un) 5 VU)2(7).

Now, we estimate each of the two scalar products on the right-hand side by use of the Cauchy
inequality. Together with v = frby € P3(T) we observe

(fr—=Fs ey < M= Fleealfrorlice ey < W= Aleeal il

as well as

(V(uw—=un); Vo)) < [[V(w = up)l| 20 [V (frdr)l 22 (1)
< Cinvh' |V (w = up) || 2 || f07 | 2207
< Cinvh IV (w = up) || 2¢r) | 71 L2 )

Altogether, we see

holl frllczery < Cog(hrllfr — Fllzzery + Cinvl|V (w = wn) | 22(r)),

which finally results in

hell fllrzry < (1+ Cog) (hrll fr — Fllrzer) + Cav |V (u = w22 (7))

3. step. For an interior edge E € &£q, there holds

R N I0nwunll 2 ) < C (1Y (= wn) |l z2wp) + 107 (f = F) 22w - (4.50)

To prove this estimate, we define the edge bubble function

= [ ¢ € Hi(we)nPXT).

z2eKE
The essential estimate reads
1/2 1/2
bl 22y < 6% 20y < hil” < Cretllbr | 220, (4.51)
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where the constant Cof > 0 is independent of E. In particular, this provides

Cret N10nunllZ2(m) < ||[0nun]br ||L2(E ([0nun] ; [Onun]bE)r2(E)-

Let TE,TE_ € T be the unique elements with Tg NT, = E and wg = TE U Té Note that

v = [Opun]br € P?(T%) satisfies v ITE\E = 0. Therefore, integration by parts on T} proves

(Onunl 5 v)12(m) = Onun s V) 2oty + (Ontn 5 V) 2 o1
= (Vup ; VU)12(0p)
= (V(up —u) ;s VU) 20y + (f 5 0) 22 (wp)
< (Cinv IV (= )| 22 () + BT f | 22(0m) ) 127 0]l 120

where we have applied the Cauchy inequality and an inverse estimate for v € P?(T). For T €
{T4,T5} holds

h1/2
[0l L2y = [Onun] ElbEl L2 (1) < 1712 [0nun] ] < —L= N 1 [0nun]llL2 (&),
since |T'| < $hrhg. From this, we infer

W2 1B 0 L2 (o) < 10720 22 () < NI8nunlll 2

This finally proves

B 2N 10nun] 22y < C2(Cin IV (un — W)l 2oy + 17 Fllz2y) 110ntn] | 22

and we may conclude this step by use of step 2 to dominate ||h7f||2(.,)
4. step. For T' € 7 and a Neumann edge E € Ey N Ep, it holds

| - Onunllr2(p)

< (1?6 — de) 2y + IV (w — )l 2y + Whr (f = F)l2er) -

We consider again the edge bubble function bg € P?(T) and note that belorg = 0. With v =
(pe — Onup)br € P?(T), we proceed as in step 3 and obtain

Cret lde — 0 Uh”L2(E (g — Onun 5 v)2(my = (b — ¢ 3 V) r2(p) + (¢ — Onun ; V) [2(E).-

For the second term, we employ integration by parts to see

(4.52)

(¢ — Onun 5 v)r2(p) = (On(u — un) ; v) 12007
= (V(u—wupn); Vo) r2r) — (f 5 v)2(1)

< (Cine IV (u = un) | 2y + |A7f 2y B

Pl\¢g = dunllr2m

The first term is estimated by the Cauchy inequality directly
(e — 63 v)12m) < IIhg* (b6 = &)l 12y I 0l 12
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There holds

1]l 2y = (8¢ — Bnun)|2lllbe ]| L2s) < hil*|(Se — Onun) ] = b — Ontun| L2(s).
Altogether, we thus have shown

hil*||ge — 0 hunl|72(m)

< Clp (Cinv IV (w = wn) | z2¢ry + |7 f |l 2y + ”hé/z(% — )lr2m)) lloe — OnunllL2(m)

Here, ||h7 f||12(r) is estimated by step 2, and ¢¢ on the left-hand side is replaced by ¢ with the
help of the triangle inequality. |

Ezxercise 30. Prove that f7 in Theorem 4.13 can be replaced by an arbitrary 7 -elementwise
polynomial fr € P™(T). The constant C' > 0 in (4.46)—(4.47) then additionally depends on
the polynomial degree m € Ny. O

Remark. With the help of a so-called extension operator that extends a polynomial p : £ — R to
a polynomial Feyyp : T — R, one can show that ¢¢ in Theorem 4.13 can be replaced by an arbitrary
En-edgewise polynomial (with respect to the arclength). O

Actually, the the volume residual contribution ||hr f||z2(q) = O(h) to n can be improved. This
is done in the following exercise, where this term is replaced by some higher-order term O(h?).

Exercise 31. Let Q. = supp((.) denote the node patch of z € K. For f € L?(Q), let
fro=1Q.! sz f dx denote the corresponding integral mean. Prove the following claims:

(i) For all inner nodes z € K\I', it holds

/2 _
/ F1Cdr < O( X 0wl ) 1072 .l oo

Ee&q
z€EE

(ii) For all inner nodes z € IC\I' and elements 7" € 7 with z € T', it holds

ct HhTf”Lz < hr(f = f2) HL2 y Z ”hg [0 uh]]HL2(E)'

Eec&q
zeFE
(iii) Derive the equivalence
Clp <7 _||hg [[5 Uh]]HL?(gQ +||h ( 8nuh)H%z(gN)
+ > b (f = f)ll2 . < Cn

zeK\Q

(iv) Conclude that the improved error estimator 7 is reliable and efficient.
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(v) In what sense is the error estimator 77 improved when compared to 7.

The constant C' > 0 in (i)—(iii) depends only on 7-shape regularity of 7. O

The following MATLAB code computes the vector of the element-based refinement indicators nr
from (4.40). The integral

B3 £ 12y = 3 /T F2de ~ BT f(s7)? = TP f(s7)?

is computed by 1-point quadrature associated with the center of mass sp of T'. The integral

rllo =0 aorory = 30 hr [ (0= 0,u)?ds

EecErnén

~ Y hrhp(é(me) — Onun)|E)”

EeErnén

~ (7] ST (¢me) — (Guun)lE)’
EcErnén

is computed edge-wise by midpoint quadrature.

NN DN RN D) = = = = e e s e e e
=W N = O O 00 O Ui Wi = O

1 function etaR = computeEtaR(x,coordinates,elements,f,dirichlet,neumann,phi)
2
3 % ETAR = COMPUTEETAR(X,COORDINATES,ELEMENTS,F,DIRICHLET,NEUMANN,PHI)
4 % computes the element-based refinement indicators associated with
5 % the residual-based error estimator. ETAR is a column vector, where
6 % ETAR(§)"2 = ITjl * || £ |1_{L 2(Tj)}"2
7 %+ 1TjI°{1/2} * || jump(\partial_n u_h) ||_{L"2(\partial Tj \cap \Omega)l}~2
8 % + ITjl~{1/2} * || \phi - \partial_n u_h ||_{L"2(\partial Tj\cap\Gamma_N)}"2
9 % The exact integrals involving F and PHI\lastmodified{11.05.2009}

are integrated by midpoint

% quadrature.

% (c) 2007,2008 by Dirk Praetorius, last modified 08.01.2008

% dirk.praetorius@tuwien.ac.at - http://www.asc.tuwien.ac.at/~dirk

M = size(elements,1);

N = size(coordinates,1);

etaR = zeros(M,1);

int = sparse(N,N);

Jx*x Compute normal derivatives \partial_nT(uh) on all edges

for j = 1:M

nodes = elements(j,:);
B=1[111; coordinates(nodes,:)’];

[\
ot
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26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
93
54
95
56
o7
o8
59
60
61
62
63
64
65

G=B\N[0O; 10 ; 01];

grad = G’*x(nodes); % gradient \nabla u_h on element T_j

for k = 1:3
nodel = nodes(k);
node2 = nodes(mod(k,3)+1);

[1 -1]*coordinates([nodel,node2],:);
normal = normal*[0 1;-1 0] / norm(normal);
int(nodel,node2) = normal*grad;

end

normal

end

%*x* Delete data in case of Dirichlet edges
for j = 1:size(dirichlet,1)

nodes = dirichlet(j,:);

int (nodes (1) ,nodes(2)) = 0;
end

%*x* Evaluate exact Neumann data on Neumann edges
for j = 1:size(neumann,1)

nodes = neumann(j,:);

m = [1 1]*coordinates(nodes,:)/2;

int (nodes(2) ,nodes(1)) = -phi(m);
end

%x** Compute residual-based refinement indicators
for j = 1:M
nodes = elements(j,:);
Jx** Compute volume contribution by midpoint quadrature
sizeT = det([1 1 1 ; coordinates(nodes,:)’])/2;
s = [1 1 1]*coordinates(nodes, :)/3;
etaR(j) = sizeT 2*f(s)"2;
%x** Add edge contributions

for k = 1:3
nodel = nodes(k);
node2 = nodes(mod(k,3)+1);

hE = norm([1 -1]*coordinates([nodel,node2],:));
etaR(j) = etaR(j) + sizeT*(int(nodel,node2)+int(node2,nodel))"2;
end
end
etaR = sqrt(etaR);

60



CHAPTER 4. A POSTERIORI ANALYSIS

Ezxercise 32. Consider the homogenous Dirichlet problems

—Au=1 in Q,
u=0 onl =09,

with  being either the square Q = (—1,1)? or the L-shaped domain Q = (—1,1)2\[0,1]2.
Plot error and error estimator over the number of elements. How can one use the plot to see
whether an error estimator is reliable and/or efficient? O

Ezxercise 33. Note that the computational time of the function computeEtaR grows quadrat-
ically with the number M = #7T of elements. This is due to the successive assembly of the
sparse matrix int. Improve the implementation so that one observes real linear complexity. O

Ezxercise 3. For the computation of the residual-based refinement indicators 77, the given
MATLAB codes approximates the exact data f and ¢ for the terms

Ih7 £l and  |[hY* (6 — Bnup)l 2wy for T € T resp. E € Ex

by flr =~ f(sr) and ¢|g ~ ¢(mg). Here, sy and mg denote the center of mass of 7' and the
midpoint of E, respectively. Formally, this leads to an approximation 7z of ngr. Prove that,
for f € HX(T) and ¢ € C?(Ey), there holds

ng — gl < C (IB3V flmer + 102 o)

with a constant C' > 0 that only depends on o(7). Consequently, the computed estimator 7r
is, in fact, reliable and efficient up to terms of higher order. O

4.4 Adaptive Mesh-Refining Algorithm

Usually, a posteriori error estimates are not only used to estimate the (unknown) error ||V (u —
up) | z2() but even to steer the local mesh-refinement. Let

n = ( > n(T)z)

TeT

1/2

be an a posteriori error estimator, where the quantities n(7") := nr reflect —at least heuristically—
the (unknown) local error |[V(u — up)|z2(r) for all T" € 7. We then aim to refine only the ele-
ments T € T, where n(T) is large. Therefore, the quantities n(7") are usually called refinement
indicators (or error indicators). To state our version of an adaptive algorithm, we introduce some
additional notation which will be used from now on.

e the index ¢ € Ny denotes the step of the adaptive algorithm,

e 7, is the mesh in the /-th step of the adaptive algorithm.
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e N, and & denote the associated sets of nodes and edges, respectively.
o Uy € Xy :=S}(Ty) denotes the Galerkin solution in the (-th step.
o hy € PUTy), he|r := diam(T) is the local mesh-side function.

With this notation, one common strategy is the following: Let 6 € (0,1) be the parameter for the
adaptive algorithm.

Algorithm 4.14 (Adaptive Mesh-Refinement). Input: Initial triangulation To, toler-
ance T > 0, adaptivity parameter 6 € (0,1), counter £ := 0.

(i) Compute discrete solution U,.
(ii) Compute refinement indicators ny(T) and error estimator ny; = (ZTE% ng(T)z)l/z.
(iii) Stop computation provided that ny < T

(iv) Choose the minimal set My C Ty of marked elements such that

Onf =0 n(D?< Y m(T) (4.53)

TET, TeM,

(v) Generate a new reqular mesh Toi1, where at least all marked elements have been refined.

(vi) Update £ +— €+ 1 and goto (i).

Output: Finite sequence of discrete solutions Uy and corresponding error estimators 1.

Remark. Clearly, the stopping criterion (iii) is only meaningful if 7, is reliable and if the reliability
constant in ||V (u—Up)||r2(q) < Cre1n¢ is known. In practice, runtime and storage requirements are
the limiting quantities for a numerical simulation. Usually, one thus uses rather a maximal runtime
or a maximal storage requirement, e.g., the maximal number of elements, as a stopping criterion.
Adaptivity is then used to obtain an —in some sense— optimal approximation with respect to
these side constraints. O

Remark. The marking criterion (4.53) was introduced by DORFLER (1996). It will be crucial to
prove convergence of U, to the exact solution u € H,(Q) of (4.1). Note that the choice § — 0
in (4.53) leads to highly adapted meshes, whereas # — 1 corresponds to (almost) uniform mesh-
refinement. However, for small 0, only a few elements are refined per step. This may result in too
many steps in the sense that usually the assembly of the Galerkin data is the most time consuming
part of the algorithm. In practice, a good compromise between sufficient mesh-adaption and as few
steps in the loop as possible appears to be 6 ~ 0.25. O

Remark. In the beginning of the analysis of adaptive FEM, Babuska proposed the following
marking criterion: An element 7' € T is marked for refinement if and only if

nr > 0 max {ny | T" € T}, (4.54)
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which is called bulk criterion in the literature. Convergence (but not optimality) of this version
of adaptive FEM was proven by MORIN, SIEBERT & VEESER (2008). Very recently, DIENING,
KREUZER & STEVENSON (2014) proved the so-called instance optimality of the adaptive algorithm
for some extended bulk criterion. O

Before we comment on the local mesh-refinement in step (v) of Algorithm 4.14, we give a simple
MATLAB realization of Algorithm 4.14. We use the number of elements M := #7 and stop the
adaptive algorithm when M > M.

function [x,M,energy,etaR]
= solvelaplaceAdaptively(coordinates,elements,f,dirichlet,neumann,phi,theta,Mmax)

1

2

3

4 ell = 1;

5 while 1

6 M(ell) = size(elements,1);
7

8

9

Jx** Compute discrete solution and cooresponding energy
[x,energy(ell)] = solvelaplace(coordinates,elements,f,dirichlet,neumann,phi);

10

11 Jx** Compute refinement indicators and error estimator

12 indicators = computeEtaR(x,coordinates,elements,f,dirichlet,neumann,phi);
13 etaR(ell) = norm(indicators);

14

15 Jx** Stopping criterion

16 if M(ell) >= Mmax

17 break

18 end

19

20 Jx** Use Doerfler marking to mark elements for refinement
21 [indicators,idx] = sort(indicators.”2,’descend’);

22 sumeta = cumsum(indicators);

23 m = find(theta*sumeta(end)<=sumeta,l);

24 marked = idx(1:m);

25

26 Jx** Generate a new mesh by RGB-refinement

27 [coordinates,elements,dirichlet,neumann] = ...

28 rgbrefine(coordinates,elements,dirichlet,neumann,marked) ;
29

30 Jx** Update counter

31 ell = ell + 1;

32 end

4.4.1 Red-Green-Blue Refinement

It now remains to discuss the mesh-refinement. Recall that all error estimates are affected by the

shape regularity o(7y) in the sense that the involved constants become unbounded for o(7;) Looo,
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00. Therefore, the mesh-refinement has to take care of the interior angles of the elements T' € Ty
since o(7y) tends to infinity if and only if the minimal interior angle of the triangulation tends to
zero. We follow the so-called red-green-blue strategy (or RGB-refinement): This refinement
strategy is based on edge-refinement. First, we thus use the following marking rule:

e If an element T' € 7, is marked for refinement, we mark all edges ¥ € Ep for refinement.
We now proceed recursively as follows:

e For each element T € T,, we mark its longest edge E € Er for refinement provided that Ep
contains a marked edge.

Each marked edge will be halved, i.e., the midpoint mpg of a marked edge belongs to the new set
K¢y1 of nodes. Finally, we have the following refinement rules, for all T € 7;:

e [f no edge in &r is marked for refinement, 7' is not refined, i.e., T € Tp11.

e If all edges in £ are marked, we use a red-refinement of T, i.e., T" is refined uniformly into
four similar triangles, cf. Figure 4.3.

e If one edge in &r is marked (and hence the longest edge), we use a green-refinement, i.e.,
T is refined into two triangles, cf. Figure 4.4.

e If two edges in &r are marked — one of which is, according to the marking rule, the longest
edge of T'—, we use a blue-refinement, i.e., T is split into three triangles, cf. Figure 4.5.

In Figure 4.6, we visualize a simple example for an RGB-refined mesh.

FIGURE 4.3. Red-refinement: If all edges of a triangle T € Ty are marked (left), T is refined into
four similar triangles T, T, T3, Ty € Te+1 (right).

FIGURE 4.4. Green-refinement: If only the longest edge of a triangle T € Ty is marked (left), T
is refined into two new triangles Ty, Ty € Toq1 (right).

We state the following elementary but important theorem without a proof.
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FIGURE 4.5. Blue-refinement: If besides the longest edge of a triangle T € T; just one other edge
is marked for refinement (left), T is refined into three new triangles Ty, To,T5 € To11 (right).

FIGURE 4.6. The left plot shows an initial mesh T; with marked elements coloured in grey. The
right plot shows the mesh Tey1 obtained by RGB-refinement of the marked elements. The grey
elements are obtained by uniform refinement of a marked element T € Ty.

Theorem 4.15. Let Ty be a reqular triangulation such that € > 0 is a lower bound for the
smallest angle of a triangle T € Tg. Let T; be a sequence of meshes, where Ty is obtained
by RGB-refinement of the mesh Ty_1 and where the set My_1 C Ty_1 of marked elements is
arbitrary. Then, Ty is regular and the smallest angle of all triangles T € Ty is bounded from
below by /2. In particular, there holds

supo(Ty) < o0, (4.55)
/eN

which is an equivalent formulation for the fact that the smallest angles of the triangulations Ty

do not tend to zero. [ |

The following MATLAB code is an implementation of the RGB mesh-refinement strategy, which
additionally takes care of the specification of the domain boundary.

function [coordinates,newelements,varargout]
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© 00 N O O W N

R R R R R R W W W W W W W W W W N NN DN DNDDNDNDNDN e e e e e e
DT W HEH OO WO Tk WNFEOO©OW-SO ULk WNDEFE O OWOWwW= O Ui W= O

= rgbrefine(coordinates,elements,varargin)

% [COORDINATES,ELEMENTS [,DIRICHLET] [,ROBIN] [,NEUMANN] ]

% = RGBREFINE(COORDINATES,ELEMENTS [,DIRICHLET] [,ROBIN] [,NEUMANN], MARKED]
% refines the MARKED elements of a regular triangulation by a

% uniform refinement (red refinement). A green-blue closure leads

% to a new regular triangulation.

b

% vector MARKED contains the indices of all elements that will be refined
b

% Optionally, one can provide the specification of boundary conditions,

% e.g., Dirichlet, Robin, and/or Neumann boundaries. Then, the refined

% boundary conditions are returned in the same order

% (c) 2007 by Dirk Praetorius, last modified 21.11.2007
% dirk.praetorius@tuwien.ac.at - http://www.math.tuwien.ac.at/~dirk

M = size(elements,1);
N = size(coordinates,1);
markedelements = varargin{end};

%x*x* Sort elements such that the longest edge is always the first edge,
%*x* i.e. we sort the entries in each row elements(j,:) accordingly.

for j = 1:M
[hmax,idx] = max(sum((coordinates(elements(j,[2,3,1]),:)- ...
coordinates(elements(j,[1,2,3]1),:)).72%));
elements(j,:) = elements(j, [idx,mod(idx,3)+1,mod (idx+1,3)+1]);
end

%x** Introduce numbering of edges, stored in a sparse matrix EDGES:
Jx** — EDGES(J,K) \neq O if and only if nodes J and K connected by edge,
%*x* — EDGES(J,K) \neq EDGES(XK,J) if and only if edge on boundary.

edges = sparse(N,N);

noedges = 0; % number of edges
for j = 1:M
for k = 1:3
a = [elements(j,k),elements(j,mod(k,3)+1)];

if edges(a(2),a(1))
edges(a(1),a(2)) = edges(a(2),a(1));
else
noedges = noedges+l;
edges(a(l),a(2)) = noedges;
end
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47
48
49
50
51
92
53
54
95
56
o7
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

end
end

%*x*x Transfer marking of elements to marking of edges.
%*xx*x If element(j) is marked, we mark all of its edges (red-refinement).
Jx*x - MARKEDEDGES(k) \neq O if and only if edge K will be refined.

element2edges = zeros(M,3);
for j = 1:M

element2edges(j,:) = diag(edges(elements(j,:),elements(j,[2,3,1]1)));

end
markededges = sparse(noedges,1);

markededges (element2edges (markedelements,:)) =

ones (3*length(markedelements),1);

%x*x* Mark further edges according to green-blue closure:
%*x* To ensure that the triangles do not degenerate, we always refine
%x*x* the longest edge, i.e. the first edge of an element.

edge2elements = sparse(N,N);
for j = 1:M

edge2elements (elements(j,:),elements(j, [2,3,1]1)) = ...
edge2elements(elements(j,:),elements(j, [2,3,1]))+j*eye(3,3);

k=13;
while k
I = element2edges(k,:);

if markededges(I(1))==1 | markededges(I(2:3))==[0;0]

k = 0;
else
markededges (I(1))=1;

k = edge2elements(elements(k,2),elements(k,1));

end
end
end

%x*x* For each marked edge, its midpoint becomes a new node.
%*** We store the number of the new nodes in MARKEDEDGES instead of 1.

idx = find(markededges);
markededges (idx) = N+1:N+length(idx);
for j = 1l:nnz(markededges)

[a,b] = find(idx(j) == edges);

coordinates (markededges(idx(j)),:)=(coordinates(a(l),:)+coordinates(b(1),:))/2;

end

%*** Create new elements
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92

93 I = reshape(edges(size(edges,1)*(elements(:,[2,3,1])-1)+elements(:,[1,2,3]1)),M,3);
94

95  boundaryedges = nonzeros(tril(abs(edges-edges’)));

96 newelements = zeros(2xlength(idx)-nnz(markededges (boundaryedges))+M,3);

97

98 counter = 0;

99 for j = 1:M

100 RefineEdge = find(markededges(I(j,:)));

101 newnodes=markededges (I(j,RefineEdge))’;

102 if size(RefineEdge,1)==3 } red refinement

103 new = [ newnodes([2,3,1]);

104 [elements(j,1) newnodes(1l) newnodes(3)];

105 [newnodes (1) elements(j,2) newnodes(2)];

106 [newnodes(3) newnodes(2) elements(j,3)] 1;

107 elseif size(RefineEdge,1)==2 ¥, blue refinement

108 new = [ [newnodes(1), elements(j,RefineEdge(2)) ,newnodes(2)];

109 [elements(j,5-RefineEdge(2)),

110 elements(j,rem(5-RefineEdge(2),3)+1) ,newnodes(1)];

111 [elements(j,rem(RefineEdge(2),3)+1) ,newnodes (1) ,newnodes(2)] 1;
112 elseif size(RefineEdge,1)==1 ¥, green refinement

113 new = [ [elements(j,[2,3]),newnodes];

114 [elements(j, [3,1]) ,newnodes] 1;

115 else % no refinement

116 new = elements(j,:);

117 end

118 newelements (counter+1:counter+size(new,1),:) = new;

119 counter = counter + size(new,1);

120 end

121

122 Yx** Update boundary conditions

123

124 for j = l:nargin-3

125 boundary = varargin{j};

126 if “isempty(boundary)

127 counter = 0;

128 boundarynr = edges(size(edges,1)*(boundary(:,2)-1)+boundary(:,1));
129 for k = 1:size(boundary,1)

130 if markededges(boundarynr (k))

131 boundary = [ boundary(l:k-1+counter,:);

132 boundary (k+counter, 1) ,markededges (boundarynr(k)) ;
133 markededges (boundarynr (k) ) ,boundary (k+counter,2) ;
134 boundary (k+1+counter:size(boundary,1),:) 1;
135 counter = counter + 1;

136 end
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end
end
varargout(j) = {boundary};
end

4.5 Convergence of Adaptive FEM

In the following, we aim to show that Algorithm 4.14 creates a sequence U, of discrete solutions
which converges to the exact solution u € H := HE(Q) The adaptive algorithm generates a
sequence Xy = 85(72) of finite dimensional nested subspaces of H, i.e., Xy ; Xpyq for all £ € Ny,
since Tyy1 is some refinement of 7,. We first stress that the sequence Uy is always convergent to
some limit Uy, € H. However, we even stress that one may in general expect that Uy, # u.

Ezxercise 35. Let X, be nested subspaces of a Hilbert space H, i.e., Xy C Xp41 for all £ € Np.
Let (- ;-) be an elliptic and continuous bilinear form on H with corresponding Galerkin
solutions Uy € Xp. Prove that the limit Uy, := limy_, o, Uy exists in H. Hint: Define X, as
the closure of | J,~, Xy in H. Let Uy € X be the corresponding Galerkin solution, and prove
that Uy is the limit of the sequence Uy. O

Ezercise 36. Let H = HL(Q) and X, = Sh(T;), where the regular initial mesh 7y is given
and where 7, is obtained iteratively by uniform refinement of 7,_;. Prove that X, = H for
the space X, from Exercise 35. O

The interpretation of the last exercises is the following: For uniform mesh-refinement, there
usually holds X, = H and thus u = Uy, i.e., we have convergence of the sequence of discrete
solutions Uy towards the unique solution u. However, adaptive mesh-refinement may lead to X, ;
H. Consequently, the question arrises whether the adaptive algorithm guarantees U, = u or not.
This will be discussed in the following sections.

Throughout the subsequent section, we use the following notation, which is now collected for
the convenience of the reader:

Uy Xy = Sb(ﬂ) denotes the Galerkin solution.

For T € Ty and some V € SK(Tz), ne(T, V) denotes the associated refinement indicator, e.g.,
(T, V) = W fl 2y + hrlll02VINZ20rn) + hllé — 0V 720000 - (4.56)

For some subset M C Ty and V' € SL(Tp), let (M, V) := (X pepme(T, V)Z)l/z.

We abbreviate ny(M) = ny(M,Uy) and 1y = 1y(Ty).
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Note that in case of (4.56), 7, is the residual a posteriori error estimator discussed in Section 4.3.
We recall some technical terms, proven above for the residual error estimator 7.

e 7 is reliable if

[u—="Uellar < Crame. (4.57)
e 1 is efficient (up to oscillation terms which depend only on 7y), if
e < Cegt (||u — Upllir + 0scy), (4.58)
where oscy := oscy(Ty), oscg(M) := (ZTGM OSCg(T)z)l/z for M C Ty, and
oscy(T)? := hi|| f - frllcey + hrllo — <Z55H%2(6T0FN)- (4.59)
e The set My C T, of marked elements is usually assumed to satisfy the Doérfler marking
0me < ne(My) (4.60)

for some fixed parameter 6 € (0, 1).

Ezxercise 37. Prove that ||u — Uy| g as well as oscy are monotonously decreasing for ¢ — oo.
Prove that in case of the residual-based indicators (4.56), there holds osc,(T") < ny(T') for all
T € Ty, i.e., the error estimator dominates the oscillation terms. O

A A

FIGURE 4.7. Bisec(5) guarantees the inner node property: Let T be marked for refinement (left)
and assume that the bottom edge is the reference edge. With five bisections, we pass the configu-
ration of bisec(3) in the middle and end up with an inner node (right).

The following convergence theorem is a result of CASCON, KREUZER, NOCHETTO & SIEBERT
from 2008, where it is proven that the combined error quantity, which consists of error and error
estimator, has a contraction property. We stress two important observations:

e For their analysis, CASCON, KREUZER, NOCHETTO, and SIEBERT re-define the mesh width
hr == |T|Y? for T € Ty, (4.61)

whereas we considered diam(7') before. Note that, however, |T| < diam(T)? < 20(T)|T|
so that both definition are equivalent for shape regular meshes, and we shall use the new
definition in what follows.
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o If T € T, is refined, each son T" € Ty, satisfies at least |T7| < |T'|/2, which now results in a
strict reduction hy < h/v/2 of the local mesh-width (which fails, in general, for the usual
definition hp = diam(T")). This observation is used in step 2 of the proof of the following
theorem.

We note that the analysis holds for general symmetric problems. For non-symmetric problems, the
correspoding result has been open until FEISCHL, FUHRER & PRAETORIUS (2014).

Theorem 4.16 (Cascén, Kreuzer, Nochetto & Siebert ’08).  Suppose that the set of
marked elements My satisfies the Dérfler marking for some fized 0 € (0,1). Then, there are
constants k > 0 and q € (0,1) which depend only on 6 and uniform ~-shape reqularity of Ty for
all ¢ € Ny, such that

1/2 1/2
IVt~ Ure) oy + 5 101) "> < 0 (19— U3y + w07) /2 for all € € N, (4.62)

In particular, this implies convergence lim ||V (u — Up)|[r2(q) =0 = lim ;.
{—00 {—00

Proof. 1. step. There holds the following quasi-triangle inequality for the error estimator
(V) <ne(W) + Ca [V(V = W)ll2i) for all V,W € Sp(T) (4.63)

with some constant C'a > 0 which depends only on o(7;): From the triangle inequalities in /5 and
L?, we infer

1/2
ne(V) = [HhéfH%%Q) + ) hr (1102 VIIZ2orng) + ¢ — 3nVH%2(aTmrN))]
TET;
< |||hef]? her (|0, W3 — 0, W |2 2
< Mhefllz20) + Z (/I[0n Mz20r00) + ¢ = On ||L2(8TOFN))
TET;
her ([[0n.(V — W)]|I3 O (V —W)||3 v
+ Z 7 (1[0 ( Nz20rn0) T 110n( )HL2(6T0FN))

TeT,
For fixed T' € Ty and E € &7, a scaling argument proves
he (1100 (V = W)DIZ2 0y + 100V = )32 0m0ry)) S IV = W)l[72 (0,

where the constant depends only on o(7;). Consequently, we end up with (4.63).

2. step. There holds an estimator reduction in the sense that there is a constant ¢ € (0,1)
with

Npsr < (L4 8)oni + Csl|V (Uepr — Us)l[72(qy  for all 6 >0, (4.64)

where Cs > 0 depends only on § and Ca > 0. The constant ¢ depends only on 6 and the reduction
of the mesh-side on marked elements: Let Q, := UTe M, T denote the subdomain of €2, where the

elements are marked. Recall that hpr < hp/ V2 for all sons T" € Ty41 of a marked element T € M,.
The crucial step is to observe that the error indicators

ne(T, V)2 - h%”f”%%q“) + hTH[[anV]]H%?(aTmQ) +hrlle - anv”%%aTnFN)'
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for hy = |T|'/? lead to

ne1U)® = Y (T U+ Y nea(T,Up)°

T'€Tpq1 T'€Tpq1
T/ CQx T/ CO\Qx
1
< 7 ST U+ > m(T,Up)?
2 TeT, TeT,
TCQx TCO\Qx

= 27120 (M)? + 1e(Te\M)?
= (272 = Dymp(My)? + 2.

By use of the Dérfler marking 617 < n,(M,)?, we thus obtain
i (Ue) <mf = (1=272)m(Me)* < onf - with o:= (1 —6(1—27?)).
Now, Young’s inequality and step 1 conclude

Mo < (1+8)mea(Ue)* + (1+ 6 ORIV (Usr — Un)ll2 (0
< (1 +8)en; + 1+ HCR V(U1 — U720

3. step. Proof of contraction property (4.62): Let ,d, 5 > 0 be constants which are fixed later.
Let 0 € (0,1) be the given constant from step 2. We recall the Galerkin orthogonality

IV (u = U2y = IV (u = Uss)[[F2 () + IV (U1 = Up)l 720
This and the estimator reduction imply

IV (w = Uer)l[F20 + w1 = IV (w = U2 () = IV U1 = U720 + K71
< [[V(u— UZ)”L2(Q) (kCs = DIV (Upsr — UZ)”2L2(Q) +r(1+ 6)on;.

Provided that kCs < 1, we infer

IV (w = Ues1)l[F20 + w1 < V(= U7y + 5(1+ 8)en;
= |V (u—Up)l72(0) — wBnf + w((1+8)o + B) i
Reliability ||V (u — Up)|r2(q) < Creme finally leads to
IV (u = Us)|[ 720 + WH < (1= wBC IV (u = U720 + w((1+ 8)o+ B)
< max {1 — /15 et (L 0)o+ 8} (IV(u = U729y + /“7@)
It remains to choose the constants , d, 8 so that ¢ := max {1 kBC ml , (1+0)o+ 5}
e Choose 0 > 0 such that (1 +J)p < 1.
e Choose k > 0 such that kCs < 1.

e Choose # > 0 such that (1+d0)k + 3 < 1.
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This implies ¢ € (0,1) and concludes the proof. [ |

Remark. We again collect the main arguments of the preceeding proof, namely a certain quasi-
triangle inequality of the estimator (4.63) and a strict reduction 7,41 (sons(My), Uy) < kne(My, Up)
with some x € (0,1) based on the strict reduction of the local mesh-width for marked elements.
Besides this, only Galerkin orthogonality and Dorfler marking are used. Therefore, the proof works
for a quite general class of symmetric problems and a variety of error estimators. The original work
of CASCON, KREUZER, NOCHETTO & SIEBERT (2008) considers linear second order symmetric and
elliptic problems in divergence form and H'-conforming finite element spaces with fixed polynomial
degree. Finally, we stress that the proof also works for higher dimensions d > 2, where hp = |T|_1/ d,
For 2D, the usual definition hy := diam(7) is sufficient if marked elements are refined, e.g., by
red-refinement or bisec(3), since then all edges are bisected. O

Exercise 38. Prove the following variants of Young’s inequality, for all a,b € R and § > 0,
o ab< a + a2
>3 2
o (a+b)?2<(1+61a?+ (14 O

Ezercise 39. Prove that the estimator reduction (4.64) with C5 = (1 +§71)C3 is equivalent
to o1 < 0ne + CallV(Ues1 — Ul L2 O

Exercise 40. Suppose that an error estimator 7, satisfies the estimator reduction (4.64) and
that the discrete spaces are nested, i.e., Sh(T;) C Sh(Te+1) for all £ € Ng. Prove that there

holds limy_,o, ¢ = 0. Hint: Use that there always holds convergence Uy fooo, Us so that
V(U1 = U2 Looo, 0, cf. Exercise 35. O

Ezxercise 41. Prove that adaptive FEM based on the residual error estimator with the usual
definition of hy := diam(T') instead of (4.61) leads to R-linear convergence nyyx < C ¢*n, for
all k,¢ € Ng. The constants C' > 0 and 0 < ¢ < 1 depend only on § and the uniform ~-shape
regularity of 7, for all £ € Ng. Hint: Use Theorem 4.16 and consider the Dorfler marking. O
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5.1 FEM with Data Approximation

Now that we have realized that the P1-FEM is of order O(h), we need to show that the quadrature
rules used for our MATLAB implementation are sufficiently accurate. Recall that we are approxi-
mating the right-hand side of the exact P1-FEM

F(v) ::/vaalac—k/F pvds for v e H'(Q) (5.1)
by
Fi(vn) = Y |T|f(st)on(sr) + > hpd(me)op(mp)  for v, € SY(T), (5.2)
TeT Eecén

where s denotes the center of mass of an element T' € 7 and where mpg denotes the midpoint of
a Neumann edge E € Ey. Therefore, our MATLAB code realizes a perturbed P1-FEM and we need
to study the convergence of this perturbed scheme.

5.1.1 First Strang Lemma

In this section, we go back to the abstract formulation of Galerkin schemes: Let H be a real Hilbert
space with norm |- || 7. Let (- ; -) be a bilinear form which is assumed to be elliptic and continuous,
i.e., it holds that

alv]} < (v;v) aswellas (v;w) < B|v|ulw|x for all v,w € H. (5.3)

Let FF € H* be a given right-hand side. Then, the Lax-Milgram lemma applies and yields the
existence and uniqueness of the solution u € H of

(u;-)y=FeH" (5.4)

For a discretization parameter h > 0, let X; be a finite dimensional subspace of H. It is an
important property of a Galerkin scheme that it is stable with respect to certain perturbations of
the scalar product (- ; -) or the right-hand side F'. — For the interpretation, recall that usually the
right-hand side F' € H* as well as the scalar product (- ; -) involve integrals, which are computed
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numerically by quadrature rules. For a fixed discrete space X}, this leads to perturbations Fj, € X}
and (- ; -)p of F and (- ; -), respectively. In particular, this gives rise to additional consistency
errors

IF— Filx and s 0 = Consdullx
. |
' onEX\ {0} onlla

In practice, the best approximation error (or discretization error) behaves like

min ||u —vpllg = O(h%) for h — 0,

v €Xp
where the convergence order o > 0 usually depends on the regularity of the exact solution wu.
Then, the Céa lemma proves that

Hu — GhuHH = O(ha).

The following result due to Strang shows that the consistency errors should be at least of the
same order, i.e., one needs a sufficiently large order for the quadrature rules. Then, the perturbed
Galerkin scheme

(<uh ; 'Uh>>h = Fh(vh) for all v, € X, (5.5)
still allows for a unique solution u; € X;. Moreover the approximation error still satisfies
lu = up[z = O(RY).

However, the consequence of Strang’s lemma even works the other way around: You should avoid
to compute integrals exactly (or with high accuracy quadrature rules) since this is usually com-
putationally expensive and since this expense does not pay in the sense of an increased order
of convergence. Finally, we note that analytic computation of integrals via antiderivatives, i.e.,
ff fdx = F(b) — F(a) for the simple 1D case, necessarily leads to cancellation for small mesh-
sizes. These are, however, avoided for numerical integration via Gaussian quadrature rules, since
the Gaussian quadrature weights are all positive. In explicit terms, this implies that approximate
computation will be numerically more accurate than analytic computation, if the quadrature rules
are deliberately chosen.

Proposition 5.1 (First Strang Lemma). Assume that (- ; -)p is a bilinear form on Xj
and that Fy, : Xp, — R is linear. Then, there holds the following:
(i) Assume convergence of (- ; ) to (- ;-), i.e.,

[{vn ;s wn) — {vn ; wi)al

lim Ej, =0 with Ep:= sup (5.6)
h—0 v wh€Xp\ {0} |vnl| al[wnl &

Then, the bilinear forms are uniformly elliptic for small h, i.e.,
dag > 03hg > 0Vh € (0, ho)vvh e Xy, OéoH’UhH%{ < <<1)h ) Uh>>h- (57)

75



CHAPTER 5. A PRIORI ANALYSIS II

In particular, there exist unique up, € Xp, with (up, 5 -)n, = F, € X} for sufficiently small h > 0.
(ii) Provided (5.7), there holds the Céa type estimate

CH lu—upllu < Uhig)f(h (lw = wnller + 11€on 5 ) = Con s Dnllx;) + I1F = Fallx;

] (5.8)
<1+ Ep) nin v —wplla + Enllullg + [|[F = Fullx;

with u being the exact solution of (5.4). The constant C' > 0 depends only on (- ; -).

Proof. Let 0 < ¢ < a and hg > 0 such that

Vhe (0,hg)  sup |{vn 5 va) — <<2vh S o)l
v, €Xp\{0} thHH

Then, af|vpll? < (un ;s vn) < (un s v + [{vn 5 va) — (on 5 va)nl < (un 5 vi)n + €llvnll?, whence
(=) vl < (on s vr)ns

ie, (- ;-)n is an elliptic bilinear form on X} for h < hy. This concludes the proof of (i) with
ap = a —e > 0. To prove (ii), let v, € X}, be arbitrary. Then,

ao lvn — unllf < (vn — un s vn —un)n = (un s vh — un)n — Fr(vn — up).
Together with
(v —wn s vn —up) = F(on —up) — (vn 5 vp — up),
we obtain that

ag [lon — unllf < [Fun —wn) — Fn(vn —wp)] + [(on 5 o0 — un)n — (o 5 o0 — up)]
— {u—vn 5 vp — up)
<lon = upller [IF = Fullxs + 1€vn 5 D = Con s Ylxz + B llu — onllm].

Finally, the combination with a triangle inequality yields that

lu —upllg < v —vnllg + lvn — unlla
< CIFn = Flix; + I{vn 5 ) = {vn 5 Dnl

x: + lu = vn u]

for any vy, € Xp, with C = 1+ /ag. This proves the first estimate in (5.8). To see the second
estimate, note that

€vn 5 ) — (on 5 Il

This concludes the proof. |

x; < Ep |lvnllg < Ep ||ullg + En |lu — vnl[a-

Under the assumptions of the Strang lemma, one can even show convergence of the perturbed
Galerkin scheme.
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Ezercise 42. Assume that (- ; ), is a symmetric bilinear form on X} and that F}, € X;. We
assume convergence of the data in the sense that

(5.9)

lim Eh =0=lim ||F — FhHX; with Eh = sup |<<Uh ; wh>> — <<’Uh i wh>>h|
h—0 h—0 v, wREXK\{0} [vnl llwn || o

For sufficiently small A > 0, let up, € Xj be the unique solutions of the perturbed Galerkin
scheme (5.5). Under the approximation assumption

lim min ||[v—ovullg =0 foralveD (5.10)

h—0v,€Xp

for some dense subspace D of H, there holds convergence

lim ||u — ~0
hﬂ_ﬂ;(l)llu upllH

with u being the exact solution of (5.4). O

5.1.2 Approximation of Volume Forces

For our Matlab implementation of P1-FEM, we compute the bilinear form (v, ; wy) analytically
and perturb only the right-hand side. Let F' and F}, be given by (5.1)—(5.2), respectively. According
to the first Strang lemma 5.1, we only need to show that

|F' = Fylls1¢y- = O(h)

to guarantee that the perturbed P1-FEM is also of order O(h). We consider the two contributions
of the right-hand side separately.

Proposition 5.2.  Let f € H*(T) and F(v) := [, fods for v € H'(Q). Let Fy(vp) :=
Srer ITIf(sr)vn(sT) for vy € SH(T), where sy € R? denotes the center of mass of an element
T € T. Then, it holds that

IF = Fullsimy < C IRV fll 7, (5.11)

where the constant C > 0 depends only on Ty, but not on Q, T, or f.

Proof. The proof is done elementwise. For 7 € T and w € HY(T), we define the integral
mean wp = |T|~! [ wdxz. According to the Poincaré inequality, it holds that ||w — wr|| r2(r) <
Cphr||Vwl|g2(r), where the constant Cp > 0 is independent of T' and w. Moreover, w — wr is the
L2-orthogonal projection onto P°(T).

1. step. It holds that

‘ /vah dx — |T|f(3T)Uh(8T)‘ < CPM3IV fllary IVl z2ery + L — F(s) L2y llonll p2er -
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From [ v dx = |T|vp(s7), we infer that

/T fondz — |T|f(sz)on(sr) = (f — F(s7) 5 om)zacay)

= (f = f(s7) s v — vnr) L2y + (f = f(s7) 5 vnr) L2(1)

= (f = frivn—onr)r2(r) + (fr — f(s7) 5 V1) L2(7)

<|If = frlliz2mllon — vnrllz2cry + 1 fr — F(so)l 2y lvnll 2oy
where we have used orthogonality of (-)7 in the last but one step. The Poincaré inequality concludes

the proof of step 1.

2. step. It holds that [|fr — f(s7)llL2(r) < 2Creth.||D? f|| 12 with an independent constant
Cref > 0, which is obtained from a scaling argument: Let ® : T,of — 1" denote an affine diffeomor-
phism with linear part B € R?*2. Note that

| det B| /
fr= fdx = foddr=2 fo®dr = fo®dr = (fo®)r,
‘T’ / ’T‘ rcf rcf ‘Trof‘ rcf :

Together with f(s7) = (f o ®)(sz,,), this yields that

L = Fsm) 2y = |det BT TY2I(f 0 @)mpe = (f 0 @) (570022 (1300

We define g := f o ® € H?(T,) and consider the operator A : H?(Tiet) — L*(Tie) defined
by Ag := gr.. — 9(st.). Then, P}(Tiet) C ker A and continuity of A follows from the Sobolev
inequality

/2 1/2

19051 < Ngllz2( ) + 1 Tretl Ml glloo,11er
(1 + CSobolev’Tref’1/2)Hg”H2

< Crof”D2gHL2

1AGl| L2 (1,) < N19Tee |22 (100) + [Tret
ref

Therefore, the Bramble-Hilbert lemma provides a constant Cyer > 0 with [|Ag||z2(7,
We conclude the scaling argument by

ref) ref

Cratll(f 0 @)1 = (f 0 @) (5700 |2 (1) < I1D?(F © D)l 127y < |det BI7V2(BFID fl 2
which finally leads to
Ifr = f(st)llp2er) < 2Ceet B D? fll 27y

3. step. It holds that | [, fop dz — |T|f(sp)vp(s7)| < max{C},2C;et }h3 IV £l ey llvnll e oy
The combination of step 1 and step 2 proves that

| Fonda=iT\sronton)]
< max{C%h, 2C:et }h7-(IIV £ | n2¢1) | Vorll 2y + 1D 1l 2y 1ol 22 (7)) -

Note that the brackets contain an R2-scalar product which is estimated with the help of the Cauchy
inequality ab + cd < (a® + ¢2)Y/2(b? + d?)*/2. This concludes the proof of step 3.
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4. step. With C := max{C?%,2C,}, we finally sum over all elements T € T to obtain that

|F(vn) = Fr(op) < > ‘/vah dx — \T’f(ST)Uh(ST)‘

TeT

<CY IRV Fllm e lvall ey
TeT

1/2 1/2
gc(gmzwﬁpm) (TzejT\|vh\|zl<T>)

= C[|K*V f|| g1 (1 llvnl 1.0
by use of the Cauchy inequality. This concludes the proof. |

We stress that the proof does not work for f € H'(T) since H!-functions are in general discon-
tinuous so that the evaluation of f at sr is not well-defined. However, for f € C'(T), everything
works well.

Exercise 43. For f € CY(T), define F € H'(Q)* and F}, € S}(T)* as in Proposition 5.2.
Then, there holds

I1F" = Fhllsiry < C AV fll (o), (5.12)

where the constant C' > 0 does neither depend on €2 nor T or f. O

However, if the volume force only satisfies f € H'(T), one can proceed as follows:

Exercise 44. For f € HY(T), define F € H'(Q)* as in Proposition 5.2 and Fj, € S'(7)* by
Fy(vp) := Y per IT| fron(st), where fr:= |T|~! [, f da denotes the integral mean. Then,

IF = Fullsiry- < ClURV fllr2q), (5.13)

where the constant C' > 0 does neither depend on €2 nor T or f. |

5.1.3 Approximation of Neumann Data

Finally, we consider the approximation of the Neumann contribution.

Proposition 5.3. Let ¢ € C*(én) == {¢ € L*(Tn)|VE € &v ¢|p € C*(E)} and
Fv) = fFN pvds for v € HY(Q). Let Fy(vp,) = Y peey hEd(mE)vn(mE) for vy € SYT),
where mg € R? denotes the midpoint of a Neumann edge E € Ex. With the mesh-size function
h e L*(I'y), hlg := hg = diam(FE), it then holds

IF = Fullsiry < ClUBY2¢ [l cr ey o= nax (hf? max{ ||/l ooy, 10" | pemy})  (5.14)

where the constant C > 0 depends only on o(T) and |I'n]|.
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Proof. We aim to follow the lines of the proof of Proposition 5.2. For a Neumann edge E € &y
and w € L2(E), let wg := h' [ wds denote the integral mean.
1. step. From [ v, ds = hgvp(mg), we infer that

/E gvn ds — hpd(mg)on(mg) = (¢ — (mE) ; )12(m)

= (¢ — d(mEp) ; v —vhE)2(p) + (¢ — (ME) 3 VE)L2(E)
= (¢ — 5 ;vn —vE)2e) + (08 — d(ME) 5 vh)L2(E)

<||¢ = dellr2m) lvn — vrelL2(2) + 108 — ¢(mE) L2(E) lVRll L2 ()

where we have simply used orthogonality of (-)g. Therefore, the trace inequalities (4.10)—(4.11)
yield that

| /E dun ds — hpo(me)un(mp)| < C (6 = 6pll2m) + b "> I08 — 60ms) 2 ) lonll

where T' € T is an arbitrary element with F € Ep. The constant C' > 0 depends only on o(7) and
on |T'y]|.

2. step. It holds that [|¢ — ¢rllr2g) < hE |]¢’HLOO : Note that w := ¢ — ¢p € C(E) has
necessarily a zero ( € E. Therefore, the fundamental theorem of calculus proves that

v 1/2
w@)l = | [ o s < Rl
Integration over E thus yields that

16— 622z = l0l22s) /\w P dse < Wl 220y = Wol0 220y < W10 e g

3. step. It holds that [¢pr — d(mpe)ll2E) < (1/2) h%ﬂ 1¢"|| Lo (p): Let p € PY(E) be a
polynomial on E (with respect to the arclength) such that ¢(mpg) = p(mg) and ¢'(mg) = p'(mpg).
Then,

5 = 6(me) |y = 165 = otme)] = h"?| [ s —hspme)| = "] [ =) as
With w := ¢ — p and hence w” = ¢”, this implies that

65 — d(me)ll2m < by lwli e < lwlze

Note that w as well as w’ have zeros at the edge midpoint mpg. Therefore, the same arguments as
in step 2 (with the zero ( = mp and hence integration along a segment of length hg/2) prove that

2 h?
w32y < 2 0/ Zapy o well as [/ 3oy < 2 0| 2a(py = "2 16" 3agr)
Altogether, we see that
h5
2
l6 — d(me)|i2(g) < Ilwl|Z2(p < IE 16" 72y < =2 10" 120 ()-
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4. step. The combination of the preceding steps proves that

‘/Eﬁbvh ds — hE¢(mE)Uh(mE)‘ < ChE (19 1o (my + 110" | 200 () ) 1on e ()

<20 Wy ||l gy llowll g
1/2
< 20 hif* |02/ e e lvn sy
by definition of [[w||c1 (g = max{|lw| Lo gy, ||| Lo () }-
5. step. We obtain the final result by summing over all Neumann edges £ € Ey: For each

E € Ey we choose an element Ty € T with E € &p. Note that the element T can arise at most 3
times. Therefore,

|[F (o) — Fu(on)] < 2C 1032 lloveny S it llonll i ()

FEeén
1/2 1/2
< 20||h3/2¢’\|cl(gN)< > hE) ( > thH?p(TE))
Eecén Eecén
1/2112,3/2 4t 2 1/2
< 2V3C I 21026 e eny (D lonli3n )

TeT
= 2V3C|DN|MY2(R3 2 | o1 (en) 1onl a1 () -

This concludes the proof. |

Ezxercise 45. (i) Extend the MATLAB code solveLaplace such that besides the coefficient
vector of the Galerkin solution uj, € S'(T) even the energy ||us||*> = ||Vuh||2L2(Q) is returned.
The Galerkin orthogonality yields that

= unl® = ll® = flun .

Even if the exact energy [|u[|? is unknown, it can be extrapolated by use of Aitkin’s A%-method
to obtain a good approximation of the error [|u — up]|.
(ii) Consider the homogenous Dirichlet problems

—Au=1 in,
u=0 onl =09,

with © being either the square Q = (—1,1)? or the L-shaped domain Q = (—1,1)2\[0,1]2.
Which experimental convergence rates ||u — up|| = O(h*) are observed? Do you expect that
the solutions belong to H%(2)? Hint: For a convergent sequence (z;)jen, the A%-sequence
reads

2
(@i — )
Tjyo — 2Tj41 +

Yj = xj

Under certain assumptions on () en the sequence (y;);jen then converges faster to Jllg)lo xj. O
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5.2 Inhomogeneous Dirichlet Data

Under the usual assumptions of the mixed boundary value problem of Section 2.3.2, we consider
the boundary value problem

—Au=f in €,
u=up onI'p, (5.15)
Opu=¢ only.
The only difference to the problem treated above is the fact, that the Dirichlet data up might be
nontrivial. A function u € C?(Q) that solves (5.15) is called strong solution of (5.15), and the

formulation (5.15) is called the strong form of the boundary value problem. A function u € H'(£2)
is weak solution of (5.15) provided that

yulrp, = up (5.16a)
(Vu; Vo)) = (f 5 0)p2) + (95 70) 2y forall v e HL(Q). (5.16b)

These two equations are referred to as the weak form of the boundary value problem (5.15). Note
that the variational part (5.16b) of the weak form is the same as for the mixed boundary value
problem with homogeneous Dirichlet conditions up = 0.

The following proposition shows that (5.15) and (5.16) are essentially equivalent and that the
weak solution is unique. The unique solvability, however, needs certain assumptions on the Dirichlet
data: If (5.16) has a solution u € H'(Q2), then it holds that yu|r, = up, i.e., up can be extended
from I'p to a function p € H'(Q2). With the same arguments as above, cf. Exercise 12 on page 18,
one shows that

HI/Q(I‘D) = {7u|pD ‘u € HI(Q)} with norm ||v||H1/2(pD) = inf{HﬁHIp(Q) |7@|FD = v}

is a Hilbert space. Moreover, H'/2(I'p) is continuously embedded into L?(I'p), and the restriction
operator ()|, : H'/?(T') — H'/?(T'p) is well-defined and continuous.

Proposition 5.4. (i) Provided that u € C%*(Q) solves the strong form (5.15), u solves also
the weak form (5.16).

(i) Provided that f € C(Q), ¢ € C(Tx), and up € C(Tp) and that the weak solution u €
HY(Q) of (5.16) additionally satisfies u € C?(Q), then u even solves the strong form (5.15).

(iii) Let up € H'(Q) be an arbitrary extension of the Dirichlet data up € HY?(T'). Given
f € L) and ¢ € L3(T'y), there exists a unique ugp € H5(Q) such that

(Vug 5 Vo) r2(0) = (f 5 ) 1200y — (VD 5 V) r2(0) + (65 W) r2(ryy  Jor all v € Hp(9).
(5.17)

(iv) Under the assumptions of (iii), a function u € H*(Q) with yu|r, = up solves the weak
form (5.16), if and only if up :== u —Up € HH(Q) solves (5.17).

(v) Under the assumptions of (iii), there exists a unique weak solution u € H*(Q) of (5.16).
Contrary to ug € H}(SY), however, the function u € H'(Q) does not depend on the special
choice of up.
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(vi) The weak solution u € H' () satisfies

gy <0 [ sp 0@ o Gy
“) | o] ] HY2(T'p)
veEH L (Q)\{0} HY(Q) weHY/2(T n)\{0} H/2(Ty)
< Co (IIfllz2 (@) + ¢l 2n) + lunllmizer,))
(5.18)

where the constants C1,Cy > 0 only depend on Q and I'p.

Proof. Note that the variational form (5.16b) does not consider whether up is zero or not.
Therefore, the same proofs as for the mixed boundary value problem with homogeneous Dirichlet
data apply to prove (i) and (ii). To verify (iii), simply note that the left-hand side of (5.17)
defines an equivalent scalar product on the Hilbert space H}j(Q) The right-hand side is linear and
continuous on H} (). Therefore, existence and uniqueness of ug follows from the Riesz theorem.
(iv) is obvious, and (v) thus an immediate consequence of (iii) and (iv). To prove the stability
estimate, we argue as for the homogeneous Dirichlet conditions. With the Friedrichs inequality, we
see that

Cr? lluoll oy < IVuollZ2q)
= (Vug ; Vuo)2(0)
= (f 5 Vuo)r2(q) + (¢ 5 Yuo)r2(ryy — (Vip ; Vuo) r2(q)
(f 59200

< HUOHHl(Q) < sup —— + sup
veHE (\{0} V]l (@) weHY/2(I'y)\{0} lwll 172y

(¢ w)p2r .
(95 Wiaw) | |ruDHH1(m)

Second, the triangle inequality gives
lull i) < luplla @) + [lvolla @)
(¢ ; ’UJ)L2(1"N

< (14 C%) < sup m + sup ST LA (EN) + HﬂDHHl(Q)>.
vermh@noy 0l @ wemzapnoy 1Wlmeey)

Taking the infimum over all up, we conclude the stability estimate (5.18). |
Remark. A first idea for the numerical approximation of the weak solution u € H'(Q) of (5.15)
might be the following:

e Construct an extension @ip € H'(2) of the Dirichlet data.

e Discretize the variational form (5.17) by P1-FEM to obtain an approximation ug, € St (T)
of up € Hh ().

e Compute uy, := ugp + Up to obtain an approximation of wu.

We stress, however, that then uj, & S*(7) so that a postprocessing or evaluation of uy, is nontrivial.
Moreover, we have to compute the scalar product (Vup ; Vo) for discrete functions to build the
load vector of the P1-FEM for ug. This leads to additional quadrature errors. Finally and most
important, it might be hard to compute up unless the Dirichlet data up are rather simple. O

To overcome the difficulties mentioned in the previous remark, one uses the following approach
in practice, which is then called P1-FEM of the weak form (5.16):
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Discretize Dirichlet data up € HY?(I'p) by some upy, € SY(T|r,,) := {vnlr, | v € SHT)}.

Construct extension upy € S(T) with Upa|r, = uph.

With @py, replacing ip, compute P1-FEM approximation ug, € S (T), cf. (5.17).

Finally, define uy, := ugy + tpp € S'(T) as approximation of the weak solution u € H*(Q).

Note that the discrete solution uj, € SY(T) then belongs to the affine space upy, + SH(T). The
following result is the corresponding Céa-type lemmas:

Lemma 5.5 (Céa lemma, first version). Let u € H'(Q) be the weak solution of (5.15).
Let tipy, € SY(T) be the approxvimate Dirichlet data and upy := Upp|r,- Let up € SY(T) be
the unique solution of

Uplrp, = UDh

(5.19)
(Vup 5 Vou)rzi) = (f 5 vh)r2i) + (@5 0n)r2ry)  for all vy, € Sp(T).
Then, up, is quasioptimal in the sense that there exists a constant C' > 0 such that
Hlu—unllgi@) < min_flu—(vn+Upn)lgi) = min_flu—wllg)-  (5.20)
v €Sp(T) whlesl(T)
Wh|T =YD

The constant C' > 0 only depends on Q and I'p.

Proof. Note that the variational formulations (5.16) and (5.19) imply the Galerkin orthogonality
(V(u—wup) ; Vop)r2i) =0 for all vy, € SH(T).
We define ugp, := up, — Upp, € 85(7') and observe that
IV (u = un) 220y = (V(u—un) 3 V(u— [uon + Upnl)) 12 ()
= (V(u—wup); V(u—[vn + Upnl)) r2(0)
< IV (u = un)ll 2@ IV (u = [on + wpn])ll 2 @

for each v, € SH(T). Next, recall that ||v] = [Vvl[z2() + IvvllL2(r,,) provides an equivalent
norm on H'(Q), i.e., there are constants C;, Cy > 0 such that C; v]| < vl 1) < Ca ]| for all
ve HY Q). Consequently,

Cy = unll ) < IV —up)llr2) + 17w = wn) 220 p)
= [[V(u—un)llr2@) + llup — upnllr2rp)
< [|V(u = [vn + Upn])llz2(0) + Iv(u = [vn + Upr)) |2 (r )
< Cillu — (vn +Upn) | g ()

for all v, € St(T). This proves (5.20) with an infimum on the right-hand side. Standard arguments
show that this infimum is, in fact, attained. [ |
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Ezxercise 46. Proof that (5.19) has a unique solution u;, € S'(T). O

Remark. Note that Lemma 5.5 is independent of how the Dirichlet data are actually discretized,
but the discretization enters the right-hand side, since it constraints the affine space for the mini-
mum in (5.20). Later on, we shall see that appropriate discretization upy, = Jpup by means of the
Scott-Zhang projection .J, even guarantees that

U — U <(C min U —w
| rllE ) < whesl(T)H wllE Q)

where the right-hand side is independent of how up is actually discretized; see also Exercise 48—49
below. O

Remark. If the Dirichlet data up have an extension @p € H?(Q2) with Yuplr, = up, then up is
continuous. We define iipy, € S*(7) nodewise by

. up(z for z € T'p,
on(z) = {OD( ) else ’

for 2 € K. Let u € H'(£2) denote the weak solution of (5.15) and ug := u — Up € H}(£2). We
additionally define tip;, € S},(T) nodewise by

- 0 for z € T'p,
upp(z) =1 .
up(z) else,

for z € K. Note that the nodal interpolant of up reads Ipup = uUpp + upp and that ||[up —
Ihupl| (o) = O(h) decays with optimal order. Consequently, we may plug-in u = Up + ug into
Céa’s lemma to observe that

C M u—unllggy < min _|lu— (Gpp + vl o
thSb(T)

= min up — Ipup) + (ug — vy + Upp 1
vhe‘%mﬂ( )+ ( e (@)

= min up — Iyup) + (ug — w
whesbm\l( p — Inup) + (uo — wp) || g ()

<|lup — Iyup|lgi(o + min Uy — Wi\ g1(Q)-
| | m1(0) wheS},(T)H 0 | m1(0)

Conversely, it holds that

min  |Jug — wy|| g1y = min u—Up) — w1
wheS},(T)H 0 | m1(0) wheS}J(T)H( ) Il 1 (@)

= min u— (w, + Ihup) — (up — I,u
wheS})(T)H (wn + Iniip) — (Up — Inup)l g (o)

< min u — (wy, + Iup 1 + |lup — Inupl| g
e [u—( e + |l 1 ()
< |lu = unll g () + U — Intip || g1 ()-

Therefore, the proposed P1-FEM for the approximation of u € H'(Q2) converges with the same
order as the P1-FEM for the approximation of ug € Hp,(€2). O

The inhomogeneous Dirichlet problem allows the proof that the trace operator has a right
inverse £. This inverse is called lifting operator.
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Exercise 47. Let v € L(H'(Q); H'/2(I')) denote the trace operator. Prove that there exists
a lifting operator £ € L(H'/?(T); H'(Q)) such that yLv = v for all v € HY?('). Hint.
Consider an appropriate Dirichlet-Problem with inhomogeneous Dirichlet data v € HY/ 2(I)
and let u := Lv € H'(Q) denote the unique solution. O

The assumptions of the following exercise will be satisfied for the Scott-Zhang projection.

Ezxercise 48 (Céa lemma, second version). Suppose that there exists a linear projection
P, : HY(Q) — SY(T) with the following properties

(i) ”Ph’UHHl(Q) < Cstab ”U”Hl(g) for all v € HI(Q)
(i) Py = vy, for all v, € SY(T)

(i)
(iv)
Then, for u € H'(Q) being the solution of (5.15) and upy, := (Pyu)|rp, it holds that

(Pyv)|o, = |, for all v € HY(Q) with v|,, € S'(T|,) and w € {I,Tp}

v) (Pyv)l, depends only on the trace v|, for all v € HY(Q) and w € {T',T'p}

min U—v <(C min J[u—w
i [ llm o) < w;Lesl(T)H rllm @),
vplr p=uDn

where C' > 0 depends only on the stability constant Cgiap, §2, and I'p. In particular, this implies
an unconstrained Céa lemma for the mixed boundary value problem with inhomogeneous
Dirichlet data, i.e., under the assumptions of Lemma 5.5 and with upp = (Pyu)|r,, it holds

U—U <(C min U — W .
| rllE ) < whesl(T)” nll (o)

Hint. Let w € H'(Q) be the weak solution of Aw = 0 in § subject to the boundary conditions
w=u—upponI'pand O,w =0 on I'y. Define ug := u — w. Prove that ug = upp on I'p and
lu —wollg () = lw — upnl gr1/2ry- Choose vy, := Puo. O

The existence of a Scott-Zhang-type projection is essentially equivalent to the validity of the
Céa lemma.

Exercise 49. (a) Suppose that P, : H'Y(Q) — S(T) satisfies the properties (i)-(iii) of
Exercise 48 for w = T only. Then, for all u € H*(Q) and all up;, € S'(T), it holds that

min ||u — vl i) < C
g | 1 (0) [
vrlr=upn

w;LIEI}S'iP(T) lu — whl g1y + llw —wpnll gz, (5.21)

where C' > 0 depends only on €2 and the stability constant Cyiap,. Hint. Argue along the lines
of Exercise 48.

(b) Suppose that (5.21) holds true. Then, there exists a linear projection P, : H'(Q) —
SY(T) which satisfies the properties (i)-(iii) of Exercise 48. Hint. For given u € H(f),
let upy, € SYT|r) be the HY?(I')-best approximation of u|r € HY?(). With this, let

86



CHAPTER 5. A PRIORI ANALYSIS 11

Pyu := up, € SY(T) be the FEM solution of the inhomogeneous Dirichlet problem with discrete
Dirichlet data upy,. O

Remark. Note that, for inhomogeneous Dirichlet data, it holds that

llw = unll® # feull® = sl

in general. Therefore, we cannot proceed as in Exercise 45 to approximate the error. Instead, in
academic examples, where u is known, one has to compute

lw = wnll®> = > IVu = Vunl 2
TeT

by T-piecewise numerical quadrature. O

Ezxercise 50. Write a MATLAB code for the P1-FEM for the mixed boundary value prob-
lem (5.15) with inhomogeneous but continuous Dirichlet data up. To verify the code, consider
the Dirichlet problem

~Au=1 inQ=][0,1]%

u=1 onl.

If ug denotes the solution of the corresponding homogeneous problem, then it holds that u =
ug + 1. a

5.3 Higher Dimensions

A set T C R% is called non-degenerate simplex provided that there are nodes z,...,2q € R?
with 7" = conv{zp,...,24} and provided that |T'| > 0, i.e., T" has positive measure. We note
that T is in particular bounded and closed, whence compact. For d = 2, this definition describes
non-degenerate triangles; for d = 3, this definition describes non-degenerate tetrahedra.

The most important example is the reference simplex
Tief == conv{0,eq,...,eq}, (5.22)
where e; is the j-th unit vector. There holds |T;ef| = 1/d!
The diameter of T is denoted by
hr = diam(T) := max {|z — y| | z,y € T'}. (5.23)
Moreover, pr denotes the radius of the largest ball inscribed of 7', i.e.,
pri=sup{p>0|JxeT B(x,p)CT}. (5.24)

By K17 ={20,...,24}, we denote the set of nodes of T. By Ep, we denote the set of faces of T, i.e.,
Er = {conv(M) ‘ M C Kp with #M = d}. Note that E € &p is a hyper-simplex of dimension
d—1, e.g., the faces of a tetrahedron are 2-dimensional surface triangles.

Definition. Let Q be a bounded Lipschitz domain in R?, d > 2. A set 7 is a triangulation of
(consisting of simplices) if and only if
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e 7 is a finite set of non-degenerate simplices,
e the closure of € is covered by T, ie., Q =T,
o forall T,7" € T with T # T’ holds |T NT’| = 0, i.e., the overlap is a set of measure zero.

By K :=U {x € Kr ‘ T € T}, we then denote the set of nodes of the triangulation 7 and by
E=U {E eér | T e T} the set of faces of the triangulation 7. A triangulation of Q is called
conforming or regular (in the sense of Ciarlet) provided that the intersection of two elements
T, 7 € T with T £ T is

e either empty,

e or a joint k-dimensional hyper-simplex of both 7" and T”, i.e., TNT" = conv(M) with M C
KrN K and #M =k < d— 1.

According to this regularity assumption, a face E € € with surface measure | ENI'| > 0 automatically
satisfies £ C T, i.e., a face E is either a boundary face or an interior face. Additionally, we always
assume that a regular triangulation resolves the boundary conditions: If I' = 02 is partitioned into
Dirichlet and Neumann boundary I'p and 'y, respectively, each boundary face E € £ with £ C T’
satisfies

e cither E C Tp
e or ECTy.
With this assumption, we define the (disjoint) sets of boundary faces
Ep={E€&|ECTp} and &v:={Ee€&|ECTn} (5.25)
as well as the set of all interior faces
Ea =E\(Ep U&N). (5.26)

We finally note that, for each E € £q, there are two elements T,7" € T with E =T N1T".

For a regular triangulation 7, the hat functions provide a basis of S'(7), and all results of
Section 3.1 hold accordingly.
5.4 Shape Regularity & Scaling Arguments

A regular triangulation 7T is y-shape regular if

hr
= — < v < 0. 5.27
a(T) max S <09 (5.27)

According to Exercise 17, this new definition is (up to some generic constant) equivalent to the
definition given in Section 3.2.

For a non-degenerate simplex T = conv{z, ..., 24} C R% we define

Sr Tt =T, Ppv:=2zy+ Brv, where By := (21 — 20 R2—20 .- Rd— Z()) € R¥xd,
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Arguing as in Lemma 3.9, we see that ||Br||r ~ hp, since the diameter of a simplex is its longest
edge. To employ scaling arguments, it remains to prove ||B, 1” r < pr. This is done with the help
of the following lemma.

Lemma 5.6. Let T),T> C R? be compact sets with B(zj,pj) € T; € B(yj,r;j) for some
zj,y; € Tj and pj,r; > 0. Let ® : Ty — Ty be affine with ®(v) := Bv+ w and B € R¥*.
Then, it holds ||Bll2 < 1ro/p1 for the Euclidean operator norm.

Proof. 1. step. For x € R? with |z| < 2py, it holds |Bz| < 2re: Since B(xy,p1) C T1, we
find y,z € Ty with & = y — 2. Then, ®(y),P(z) € Th. Since Tp C B(ys,72), it follows 2ry >
B(y) — (2)] = |Bly — 2)| = |Bal.

2. step. For 2 € R, it holds |Bxz| < (r2/p1) |z|: Let x € RN{0}. Define v := (2p1/|z|)z. From
|v| = 2p1, we obtain (2p;/|x|)|Bz| = |Bv| < 2re. This concludes the proof. |

Corollary 5.7. With the above notation, the matriz By € R¥? is invertible with | det By| ~
(7] and | Bz < pr.

Proof. As for 2D, one obtains |det Br| ~ |T'| > 0, and hence By and ®r are invertible. Note that
Bfl is the linear part of the affine mapping @;1. Hence, Lemma 5.6 gives HBEI ll2 < hpet/pr < p:,Tl.
Norm equivalence on R¥*? concludes ||B;'||r ~ || B2 < pp' u

5.4.1 Conclusion

The analysis of the previous chapters transfers from d = 2 to general dimension d > 2.
e The whole Chapter 2 is stated for Q C R?, d > 2.
e All results of Section 3.1 now hold verbatim for d > 2.

e The Approximation Theorem 3.5 holds for d = 2,3. For d > 4, one requires higher smoothness
of u to ensure continuity (cf. the Sobolev Theorem 3.4).

e Bramble-Hilbert Lemma 3.7 and transformation formula (Lemma 3.8) have already been
formulated for d > 2.

e The inverse estimate and its applications hold verbatim.

e The data approximation analysis of Section 5.1 in the frame of the first Strang lemma applies
for d = 2,3. For d > 4, it requires only higher regularity assumptions on f to ensure
continuity.

e Technical auxiliary results like the trace inequality remain valid for general d > 2.

e The a posteriori analysis of Chapter 4 remains valid. Only the proof of Lemma 4.1 which
provides the dual basis functions to define the Scott-Zhang projection, has to be adapted.

e Finally, the adaptive convergence analysis requires hy := |T'|'/¢ ~ diam(7T"). All arguments
remain valid.
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5.5 Really high dimensional approximation

The number of elements in a regular mesh 7, in which each element T' € 7y, satisfies diam(7) ~
|T|'/¢ ~ h scales roughly like O(h~%), i.e., exponentially in the dimension. We remember the
a priori convergence of FEM which states

lw = up | g1 (o) = O(h)

in case w is sufficiently smooth. To compute uy, we need to solve a linear system with #7;, elements.
The cost for this is at least O(#7,) = O(h~%). Thus, in terms of cost, we get the estimate

—1/d
[ — wp | g () = O(N Y4
with N = #7},.
This shows that the convergence rate with respect to cost goes down in higher dimensions. For
d = 2, halving the error requires four times as many elements. For d = 4, the same error reduction

requires 16-times as many elements. This is usually called the curse of dimensionality and one
remedy for this problem are sparse grids.

5.5.1 Sparse grids

To illustrate the idea, we first look at standard tensor interpolation: For a given set of intervals T,
let Q'(T) denote the continuous functions which are affine on each interval in 7. Let I,: C([0,1]) —
Ql({[k‘Q_Z, (k+1)27 ! k=0,...,20— 1}) denote the nodal interpolation operator in 1D, i.e.,

Iow(ty) = v(ty) forall t, = k27 k=0,...,2%

We denote with I that the interpolation operator is applied in dimension x. The approximation
on the d-dimensional tensor mesh

d
T2 = { [[k:27" (ki + )27 [ by, ka € {0,020 = 13
=1

is given for v € C°([0,1]%) by
(IPv)(z) = I (177 .. (I7 ) .. ) (2, - .. ma) € QY(TS),
where
oNTS) = {ve c([0,1]%) Wl <i<d, (x; = v(z))|r is a polynomial of degree < 1}.
Similarly to the proof of the approximation theorem (Theorem 3.5), one can show
v = I20|| oo o170y < C27 ]l fo.170)

for v € C1([0,1]%). As we see, the computation of I;v requires the evaluation of 2% points in [0, 1]
and hence is impractical for many purposes (if d = 100, and £ = 1, we would need 2!°° points).
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FIGURE 5.1. The different sparse grid contributions on the left stacked on top of each other
combine to the full grid on the right. The interpolation operator Iy = IZl IZ”; corresponds to one of
the grids on the left-hand side (e.g., grid number 1 for £ = (1,2) or grid number 5 for £ = (3,1)).

The sparse grid idea is as follows: With the definition I_; = 0, we may rewrite

l
(IPv)(z) = Z(IZ“ P2 (L) ) (2, )
él—
= Z Z If = TP (I — I (I (If%) ) (31, 3q)
=045=0

= > (L) =L )y =17 ) - (L =T )(v) ().
2=(1,...0)€{0,....0}4

:ZAK

Lemma 5.8. For a subset u C {1,...,d} let Op, := [[;c, Or; denote the partial derivatives
in all directions in w. For sufficiently smooth v € C°([0,1]¢), there holds

1A g0l g1 0,170y < 47270, v 11 (0,170

where || == 401 + ...+ L4y and u C {1,...,d} contains each dimension i with £; > 0.

Proof. Let g = (z01,...,704) € [0,1] and i € {1,...,d}. Choose k € N such that [k27¢ — 2|
is minimal. Without loss of generality, we assume xq; > k27 (the other case works analogously).
Rolle’s theorem implies that there exists & € (k27¢, (k + 1)27¢) with

81’L(1 - IZi),U((L.O’l’ A 7x07i—17 67 wO,i-ﬁ-la cee awo,d) = 0.
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FIGURE 5.2. The circles represent the number of degrees of freedom of Ig in each coordinate
direction. The sparse grid approach only uses interpolation operators which correspond to circles

below the dashed line. This shape is the upper right quadrant of the so-called hyperbolic cross.
With this, there holds

(1= yela) = [

k2t

/550,1'
k2-*¢

Op; (1 = I} 0(20,15 - - T0,i—15 2 T0,i415 - - - » T0,d) A2

z
2
/ 02, 0(T0,15 -+, T0,i—1,t, 03415 - - - » To,d) dt dz
13

<|(k+ 127 = k27 P07 v(@o s o1, T0it1s - > T0.d) | L2 (k2—t, (e 1)2-1)
< 2_ZH832,U(33071, <5 L0i—1y s TOG+1y - - - a5170,d)||L2([k2*‘,(k+1)24])'
We define
Q= ®140,1] x k274, (k + 1)277) x @, 1[0, 1],
This results in
(1 = I7)0[l72 0, < 2_34/ 102, v(z01, -, T0,i-1, -, Toi41, - - > To.dll12 (o, A0
Q
—a¢
<2782 v)122 (0,

ot
Since [0,1]¢ = Ui:olev we obtain

”(1 — [;i)UHLQ([O,l]d) S 2_26“8‘32,?)”[/2([0’1]%-
Analogously, we show

IV (1 = I7)0ll 20,13y < 271100l 1 (0,174
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The triangle inequality concludes

1" = L)l oy < N = T2y )vll o,y + 111 = )l o,1y0)
< 27000 11 g0,170) + 2710kl 1 o,

< 272102 vl 120,10 -
Assume that ¢; > 0 for all 1 < i < d. Iteration of this result in all dimension shows

IV =I5 y) - (L) = Lol oy < 27 Y2102, Viag,wa 52 = I20) - (I = 17 vl 2o,

= 20|y, (T2 — I3 ) (I — I3 )02, 0l 12 o 1))

< 4=t a2 3202 ol 2 o.ajy-

The proof for the L?-norm works analogously. If some of the ¢; are zero, we just skip those
dimensions in the proof and obtain the stated result. [ |

With the last result to obtain an error of 27, we may ignore all Ay with [£] > £. This leads to
the sparse grid interpolation operator Ig defined by

Ifv:=" > Apw. (5.28)

This truncation is illustrated in Figures 5.1-5.2. To analyze the error, we need the following nice
combinatorial identity.

Lemma 5.9. There holds

rd—1
#{EGNg\|£|zj}=<j+ >

d—1

Proof. There are many proofs of this identity. A nice one goes like this: Imagine the index £ € Ng
as

1111 ... 11...1
—_—— |
él 62 éd

This line contains the [¢| +d — 1 symbols z € {1,|}. Exactly d — 1 of the symbols z must satisfy

z = |. Hence there are (j jﬁ;l) possibilities. |

Theorem 5.10. The sparse grid interpolation error satisfies

1= Iyl a1 qo,gey < CANC+ A2l o0
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where

_ 2
vlm2 (o,114) = e 10z, vl 2 (j0,174)-

Proof. Given v € H2, ([0,1]?) we may formally write
v = Z Apv.
£eNd
As shown in Lemma 5.8, we have
180l 1o,y < 47270l o,170)-

This implies that the series above converges absolutely and hence we may write the approximation
error as

v— I = Z Agpv.

d
eengd
le|>2

Altogether, we have

[0 = I0]| g1 g0, 17y < Z [Aev]| g1 (j0,12) < 4dHUHHr2mx([O,1]d) Z 2~ 14,

d d
EENO EENO
le|>0 le|>¢

The sum can be rewritten as
o0 o0 .
—|e _ . -]+d—1
SEREDYEED MED SES (M|

eenNg j=0+1 eeng j=t+1

le|>¢ le|=3
where we used Lemma 5.9 for the last identity. There holds for x € (0, 1)
l+d

> ad <Jgle> =00 Y 2T (d - 1) :ag—lf_—x/(d—m

j=t+1 j=t+1
d—1 d—
:Z< L >ak Z-i-dadlk( )1/( )
k=0
since the series converges absolutely. There holds

(dk >ak Prdgd=1-k(1 _ =1 /(4 1),

Cd=1)(d—-2)---(d—k) gtk

= K1 ((£+d)---(€+d—k+1))(d—1—k)m
l,é-i—d—k Y dd—l l,é-i—d—k

_ %((£+d)---(€+d—k+1))(1_$)d_k <! +k!) =
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Inserting = 1/2, we end up with

3 2 <j - 1) < (04 dyita .

_ d—1
j=t+1
This concludes the proof. |

The representation in (5.28) is not really good for implementation due to cancelation effects
and the requirement to constantly transform coefficient vectors between different meshes. A better
variant is provided by the inclusion-exclusion formula which is an interesting combinatorial fact in
it self.

Lemma 5.11. Ford € N and r < d, the binomial coefficient satisfies the identity

Sl ()

q=0

Proof. The proof works by induction. For r = 0, there holds (g) = (dal) = 1. Assume the

statement holds for r < d. Then, we have
d d—1
_1)r+1 _
(=1) <<7‘—|—1> ( r ))

() (,4) 5l

q=0 q=0
The well-known identity
n+1 n n
= +
() =()+ (1)
with n = d — 1 and k& = r concludes the proof. |

Lemma 5.12. With I, := I7* 1% ... I7? for £ € N&, there holds
0 ey ly 0

Ig:i(_nk(d;l) Y I

k=0 eeng
le|=t—k

Proof. We rewrite (5.28) by

II=> 0= aply (5.29)
Lengd 2'engd
lej<e le'|<e

for some ap € R. Given the definition

A= () — I )y = I y) - (I = Igty)
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we note that a particular I, appears in (5.29) if and only if there exists £ € N& with
0| <?¢ and £ <(;</l+1 foralli=1,...,d. (5.30)

Moreover, the sign of that I,/ is determined by the parity (odd or even) of the number of dimensions
i with ¢; =0, +1. For ¢=0,...,d, let

Pyt):={te Nd | £ satisfies (5.30) and £;, = ¢; +1, k=1,...,q}.

Then, we observe P,(£) = 0 if |¢'| > |€| — q. Moreover, since for each choice of ¢ indices i, we have
an element of P,(¢), there holds
d
#P,(¢) = < )

q

This implies

d —|2'| —|| y
ap =3 (CU#P(E) = Y (F)#PE) = 3 <—1>q<q>.
q=0 q=0 =0

Lemma 5.11 shows for r = ¢ — |[¢/| < d
—1e|
d nf d—1
> ve(9) = o ().
= q -1

Altogether, we see with k = ¢ — ||

d d—1
=Y () T e
k=0 oend
¢/ |=0—Fk
This concludes the proof. [ |

Lemma 5.13.  The number of evaluations of v required for the computation of Ilflv is less
than

d(ﬁ ; f; 1>2’f < d(l+d)*120

Proof. We use the representation from Lemma 5.12. Each I,v requires 2/ evaluations of v for
computation. Lemma 5.9 concludes the proof. [ |

The last result together with Theorem 5.10 shows the following: A sparse grid of size h > 0
(this means 27¢ = h) allows an interpolation error of

10 = ol o,y S (1 + | log(m))*h
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for some exponent o € N with a cost of computation of Igv less than
O((l + |log(h)|)ah_1).
This means that the error estimate with respect to cost reads
(1 = I7)0ll 710,170y S cost™

(up to logarithmic factors). The convergence rate is independent of the dimension.
Instead of the sparse interpolation operator, we may also consider the sparse Galerkin projection.
Define the (quad-)mesh

d
T2 = { H[kyﬂ“i, (ki +1)274]

i=1

ki€ {0,....25 —1},i=1,....d}

for £ = (01,...,4q) € Ng. Note that we don’t have a triangle mesh any more. However, the abstract
theory just used the fact that

X =P Q1)
e

is a closed subspace of H'([0,1]%). Hence, we may apply all the results of the previous sections.

Theorem 5.14. We consider

—Au = f in [0,1]¢,
u =0 on 8)0,1]%.

Assume that uw € H2; ([0,1]¢) and let u; € X, denote the unique Galerkin approzimation.
Then, there holds

lw = el 1 o,10) < CAYE+ )27 ull g2 (0,1)9)-

Proof. Note that Iyu € Q'(7,7) by definition. This implies that Ifu € X;. Thus, the Céa Lemma
and Theorem 5.10 show the statement. [

Analogously to the proof of Lemma 5.13, we obtain that
dimX, < d(¢ + d)* 128

There are many examples of high-dimensional PDEs in practical applications such as finance,
physics, and chemistry. One notable example is the Schrodinger eigenvalue problem: Given n € N
electrons and m € N nuclei, the goal is to to find the wave function ¢: R® — C which gives a
probability density of the position z; € R? of the i-th electron. The wave function is a solution of
the problem

1 n 3 n m 7. n n 1
—§Zzai¢($1,---,$n)+( —ZZW +Z Z m)w(!ﬁa---a!ﬂn)

i=1 j=1 i=1 j=1 i=1 j=i+1
Laplace in every dimension z; force between electrons and nuclei force between electrons
= FEY(zy1,...,x,).
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The position of the nuclei of the atoms is given by R; € R3 and Zj is the charge of the j-th
nucleus. Finally, &/ € C is the eigenvalue of the wave-function . The first part of the operator
(the Laplacian) is often abbreviated with 7" and the remaining part with V. This allows us to write
the equation as

(T 4+ V)Y = Ev.
We do not yet know how to solve eigenvalue problems, however in the simplified setting
T+Vyp=f

for some right-hand side f and Z; < 0 for all j = 1,...,m, we can derive a weak formulation
analogously to the previous chapters. (Note that a negative charge is not physical for a nucleous,
however, for Z; > 0 one needs Fredholm theory not covered in this lecture to show well-posedness
of the weak form.) This results in a problem with d = 3n and hence standard FEM is out of the
question even for a moderate number of electrons.

5.6 Higher-order FEM

Due to the Céa lemma, we observe that it can be advantageous to consider higher-order polynomial
discrete spaces for FEM. For example if the exact solution is smooth, higher-order spaces will achieve
a better rate of convergence of the FEM error.

5.6.1 Higher-order elements in 1D

We consider a “triangulation” 7 with nodes x;, ¢ = 0,...,M on an interval 2 C R. Instead
of piecewise linear functions, we may also use higher-order polynomials to construct our discrete
spaces, i.e.

SP(T) = {uec H' Q) |ulpodrecPP(T.s) VT €T}, (5.31a)
SNT) = SP(T)NH;(Q) (5.31b)
Here, the we use the mappings from the reference element Tyor = [—1,1], @7 : Ty — T as defined

above.

Remark. Since @ is affine, u|po®p is a polynomial of degree p if and only if u|p is a polynomial of
degree p. This means, the definition above is equivalent to SP(T) = {u € HY(Q) | u|r € P,¥T € T}.
However, for non-affine maps @7 (e.g., for curved elements) the Definition (5.31) is still valid, while
the second definition above does not generalize. (Remember that the scaling arguments and inverse
estimates in the previous chapters required u|p o @7 to be polynomial.) |

We construct a basis of SP(7") on the reference element. We choose a basis {N; |i =1,...,p+1}
of the polynomial space PP(T}¢f) such that

Ni(€) = 5(1-€), Na©) = 3148, N =0 i23

Remark. The functions N;, i > 3 can be chosen quite freely. The simplest possibility is N;(§) =
(1—&3)¢3 foralli € {3,...,p+ 1}. For small p = 2,3, 4, this choice is fine. However, for higher
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p, the choice leads to very badly conditioned stiffness matrices and hence to numerical instabilities.
It is better to choose more “orthogonal” basis functions as for example:

€
N = [ Liatan, (5.32)
where L; € P; is the i-th Legendre polynomial. Due to the orthogonality properties of Legendre
polynomials, we have N;(£1) = 0 for ¢ > 3. For the practical implementation, it is important to
be able to quickly evaluate the basis functions. On one hand, there holds (2i + 1) ffl L;i(t)dt =
Liy1(§)—L;—1(¢) and on the other hand, the Legendre polynomials can be computed very efficiently
via three-term recurrences. O

Since the basis functions vanish for ¢ > 3, it is easy to construct a basis of §SP(7) from these

local definitions, i.e., '
B = B'" U (UrerBT), (5.33)

where Bl" = {¢ili = 0,..., M} are the hat-functions corresponding to x;, ¢ = 0,..., M and
BT ={pr;|i=3,...,p+1} with

o Ny(®- (z)) zeT
Prile) = {0 ! xeQ\T

We note that the construction of the basis above followed a typical recipe in FEM: The local
basis function (the form functions) are associated with geometrical objects, e.g., the hat-functions
are associated with nodes, whereas the bubble functions 7 ; are associated with elements T" € 7.
Moreover, we observe that ¢|7 o &7 € {0,Ny,...,Npi1}, ie., a basis function vanishes on an
element, or it is exactly one of the local basis functions ;.

5.6.2 Higher-order elements in 2D

Analogously to the 1D case, we may define higher-order basis functions in 2D. Let 7 denote a
regular triangulation and define

Sp(T) = {u S Hl(Q) ’ U © b € Pp(TrCf)},

and SH(T) := SP(T) N HL(R).
When constructing the basis functions for the FEM-spaces, we implicitly obeyed the following
rules:

1. The basis functions ¢ € B have a simple structure on the reference element T}, i.e., for
all T € T the function satisfies p|7 o @ € {0, N1, No, ..., }, where {0, Ny,...,} is known
explicitly.

2. The support supp ¢ of the basis functions ¢ € B is small. This leads to sparse stiffness
matrices and hence more efficient solvers.

3. For implementation, it is often advantageous to associate certain basis functions with geo-
metrical objects, e.g., nodes, edges, elements, ...
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FIGURE 5.3. The edge E with elements T}, T2 and Qp =TL U Tz,

03—

0.25 —

0.2

FIGURE 5.4. Left: Ny on Tret. Right: ¢p.
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The case p =2

Idea: Construct B as a union of hat functions B"" and edges-bubble functions. The latter functions
g are supported on Qp (see Figure 5.3). On the edge F, ¢p is a quadratic function as shown in
Figure 5.4.

In engineering literature, the basis functions IN; are often illustrated with a diagram in which
each dot represents a form-function:

©) Ny, No, N3 are the hat-functions,
® Na(€m) == €1 —-&§—n)
O}
Ns(&n) = &n
Ne(&m) == n(l—-E&—n)

@ (@) @
We note that the edge bubbles Ny, ..., Ng are chosen such that they vanish on two edges of T}ef.
Hence, we may associate each of those functions with one edge where it is non-zero. We write the

basis B of S*(T) as '
B=B"U (UeeeBY) ,

where B'" is again the set of hat-functions associated with the nodes A. The one-element sets
BE = {¢p}, F € &£ contain the edge bubble functions, which are characterized as follows:

YE € Hl(Q), supp ¢ C Qf, wg|r o ®p € {Ny4, N5, Ng} VT € QF. (5.34)

Remark. If we restrict them to an edge of T, the functions N; (i € {4,5,6}) are symmetric with
respect to the midpoint of the edge. Hence, the above definition of pg leads to a continuous basis
function. To see this, let E € £ with two elements T4, T € Qp. Let I'y = {(2,0)|z € (0,1)},
I's = {(z,y) |z € (0,1)1 —x—y = 0}, T's = {(0,y)|y € (0,1)} denote the three edges of the
reference element Ti.. Let i, j € {4,5,6} denote the edge numbers corresponding to F, i.e.,
P (T';) = F and Pr2 (I';) = E. Then, the above definition of ¢ is equivalent to

N;o @;él () ze€ @
¢p(x) == { Njo @;%1(3:) v eTE
0 else

The symmetry of N; on the edges shows that this is well-defined since the two cases coincide on

the edge F.
O
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Chapter 6

Mixed Problems

6.1 Abstract Analysis of Petrov-Galerkin Schemes

Recall that for a continuous linear operator T € L(X,Y), the adjoint operator 7% : Y* — X* is
formally defined by

T*y* € X* with (T*y")(z) :=y*(Tz) forally* € Y* and z € X. (6.1)
It is an easy application of the Hahn-Banach extension theorem that 7% € L(Y™*, X*) even with the
same operator norm ||T'|| = ||T%||. We start this section with some easy, but later on important,
observations.

Lemma 6.1. Let X and Y be normed spaces and T € L(X,Y). Then, T is an isomorphism
between X and range(T) if and only if

| Ty
zex\{0} ||z|lx

T = (6.2)

In this case, there holds |[T~' : range(T) — X|| = 1/7. Moreover, the range(T) is closed
provided that X is a Banach space.

Proof. Clearly, T~! : range(T) — X is well-defined (and hence an isomorphism in the sense of
Linear Algebra) if and only if 7" is injective. If 7" is not injective, there exists some z # 0 with
Tz = 0, and hence it follows 7 = 0. In particular, 7 > 0 implies that 7" is injective. By elementary
calculations, we see

) ITaly oy _ |
ceX\{0} [[z]lx  yerange(m)\{0} [T~ yllx sup 1T wlx
yerange(T)\{0}
1
|71 : range(T) — X||

Hence, 7 > 0 implies ||7! : range(T) — X| = 1/7 < oo, i.e., T~! is even continuous. The same
calculation proves that well-posedness and continuity of 7~! imply 7 > 0. Finally, suppose that X
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is a Banach space and 7 > 0. Then, range(7’) is a Banach space as well and hence, in particular, a
closed subspace of Y. [ |

Ezxercise 51. For each operator T' € L(X,Y) between normed spaces X and Y holds
range(T) = (ker T*), := {y € Y |Vy* € ker T* y*(y) = 0}. (6.3)

Hint: The inclusion range(7T") C (ker %), can be shown directly, which leads to range(7") C
(ker T*), = (ker T*),. The converse inclusion follows by use of the Hahn-Banach separation
theorem. 0

According to the Hahn-Banach extension theorem, the Hahn-Banach embedding
Ix: X - X", (Ixx)(z"):=2%(x) forxze X and 2" € X* (6.4)

is an isometric linear operator, whence injective and continuous. A normed space X is reflexive
provided that Iy is also surjective and thus an isometric isomorphism between X and X**. We
stress that

e reflexive spaces are, in particular, complete and thus Banach spaces,
e finite dimensional spaces are reflexive,
e all Hilbert spaces are reflexive,

e closed subspaces of reflexive spaces are also reflexive.

All of these facts are simple exercises left to the reader.

Theorem 6.2. Let X and Y be reflexive Banach spaces over R, and T € L(X,Y™). Then,
T is an isomorphism if and only if the following two conditions hold:

T
e inf-sup condition 7 := inf sup M >0,

2€X\{0} yey\joy llzllx [[ylly
e non-degeneracy condition Yy c Y\{0}Fzr € X (Tz)(y) #0.

In this case, there holds ||T~|| = 1/7 for the operator norm of the inverse. The combination
of inf-sup condition and non-degeneracy condition is called LBB condition in the literature,
named after Ladyshenskaja, Babuska, and Brezzi.

Proof. 1. step. According to Lemma 6.1, 7 > 0 is equivalent to 7" : X — range(T") being an
isomorphism with closed range. It thus remains to show that range(7) = Y™* is equivalent to the
non-degeneracy condition (ND). Assume there exists y* € Y* \ range(7"). The Hahn-Banach sepa-
ration theorem implies the existence of a functional ) € Y** such that ¢(y*) = 1 and ¥|,ange(r) = 0.
With the identification of Y** and Y, we obtain some y € Y\ {0} with Iyy = ¢ and

0=19(Tr) = (T)(y)-
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This contradicts the non-degeneracy condition (ND). We showed that ND implies range(7") = Y*.
For the converse direction assume range(7') = Y* and y € Y \ {0}. There exists y* € Y* with

y*(y) # 0. Hence, we find x € X with Tz = y* and hence (T'x)(y) # 0. This concludes (ND) and
hence the proof. [ |

The following simple exercise proves that the assumptions on X in Theorem 6.2 are sharp.

Exercise 52. Let X be a normed space and Y be a reflexive Banach space over R. Let
T € L(X,Y™) be an isomorphism. Prove that X is also a reflexive Banach space. Hint: It is
known that a Banach space Z is reflexive, if and only if Z* is reflexive. Moreover, Z is reflexive,
if and only if each bounded sequence has a weakly convergent subsequence (i.e., the unit ball
of Z is weakly compact). O

We now turn to continuous bilinear forms a : X X Y — R on normed spaces X and Y. So far,
we only considered weak formulations of the type: Find x € X such that

a(z,-) =z" € X7, (6.5)

where a(+, ) is a continuous bilinear form on X =Y. For the classical Galerkin scheme, we assumed
that a(-,-) is even elliptic. Note that the last theorem provides a mathematical framework for weak
formulations of the following type: Find x € X such that

a(z,) =y e€Y", (6.6)

where a(-,-) now is a continuous bilinear form a : X x Y — R. In the literature, this approach is
named after Petrov-Galerkin.

Corollary 6.3. Let X and Y be real Banach spaces, where Y is reflexive. Leta : X XY — R
be bilinear and continuous. Then, the following statements (1)—(ii) are equivalent:

(i) For each y* € Y™, exists a unique x € X with a(x,-) = y*.

(ii) The bilinear form satisfies the LBB condition:

e inf-sup condition «:= inf M
r€X\{0} yey\{oy [zl x llylly

e non-degeneracy condition Yy c Y\{0}Jz € X a(z,y)#0.

>0,

In this case, it holds

allzllx < lly*lly- < llallll=llx, (6.7)
where |ja|| := sup _alwy) denotes the continuity bound of a(-,-).
sex\(0) [l lLx |yl
Yy

Proof. We associate with a(-,-) the operator T' € L(X,Y™) given by Tx = a(z,-). Note that (i)
is equivalent to the fact that 7" is an isomorphism (according to the open mapping theorem).
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According to Theorem 6.2, the latter is characterized by the LBB condition for 1" which, in fact,
coincides with that for a(-,-). For given y* € Y* and x € X with a(z,) = y* € Y*, it holds
Tex = y*. With |T : X — Y*|| = |lal|, we see |[y*|ly+ < |la|| ||z|lx. With 2 = T~!y* and
IT~1:Y* = X|| <1/a, we derive ||z||x < ||y*|ly+/a. This concludes the proof. [ |

One important difference to the elliptic framework now is, that we may not simply replace X
and Y by discrete spaces X and Y}, respectively. Instead, Corollary 6.3 states that we need to
satisfy the inf-sup condition and the non-degeneracy condition not only for the pairing (X,Y") of
continuous spaces, but also for any pairing (X}, Y},) of discrete spaces. To underline this, note that

0 01
T'=(0 1 0
100

is an isomorphism on Y = X = R3. For X} = Y}, = R? and the canonical embedding, i.e., z € R?
is identified with (x,0) € R?, the restricted matrix is

0 0
5= (o )

which is clearly singular. We finally note that in the discrete setting the inf-sup condition and the
non-degeneracy condition are equivalent.

Proposition 6.4. Let X and Y be real Banach spaces with dim X < oo and dimY < oo. Let
a:X XY — R be bilinear. Then, there holds the following:

(i) The inf-sup condition o := inf,c x\ {0} SUPyev\ 0} % > 0 implies dim X < dimY.

(ii) The non-degeneracy condition (Vy € Y\{0}3z € X a(z,y) # 0) implies dimY <
dim X.

(iii) For dim X = dimY’, the inf-sup condition is satisfied if and only if the non-degeneracy
condition is satisfied.

Proof. We define the operators A; € L(X,Y™) and Ay € L(Y, X*) by A1z := a(z,-) and Ay :=
a(-,y). According to Linear Algebra, finite dimension implies

dim X = dimker(A;) + dimrange(A;) < dimker(A;) + dimY”" = dimker(A4;) + dimY,
dimY = dimker(As) + dimrange(As) < dimker(As) + dim X™* = dim ker(A4s3) + dim X.

1. step. If dimX > dimY, we obtain dimker(A;) > 0. Hence, there exists z € X\{0} with
Az = 0. This implies a(z,y) = 0 for all y € Y and hence a = 0 for the inf-sup constant. By
contraposition, this shows that the inf-sup condition implies dimker(A;) = 0 and hence dim X <
dim Y. This proves (i).

2. step. If dimY > dim X, we obtain dimker(A43) > 0. Hence, there exists y € Y\{0} with
Aoy = 0. This implies a(z,y) = 0 for all z € X, and hence the non-degeneracy condition fails. By
contraposition, this shows that the non-degeneracy condition implies dimker(A43) = 0 and hence
dimY < dim X. This proves (ii).
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3. step.

In Step (ii), we have shown that (ND) implies injectivity of A. Since dim X = dimY = dim Y™,
this proves that A is bijective. The converse implication is obvious, i.e., As is bijective if and only
if (ND) holds. In Step (i), we showed that the inf-sup condition implies injectivity of A;. Since
dim X = dimY = dim Y™, this proves that A; is bijective. Again, the converse implication is
easy, i.e., Ay is bijective if and only if the inf-sup condition holds. To conlcude (iii), we only
have to show that bijectivity of A; and Ay are equivalent. To that end, let {x1,...,2,} C X
and {y1,...,yn} C Y be bases. We define the matrix A € R™*", Aj; := a(xy,y;) and note
that (Ai1xy)(y;) = a(xk,y;) = Aj as well as (A1y;)(zx) = alxg,yj) = Aji. Therefore, A is the
Petrov-Galerkin matrix corresponding to A; and its transpose AT is the Petrov-Galerkin matrix
corresponding to As. Therefore, Linear Algebra proves the equivalence

Ay is bijective <=  Aisregular <= AT isregular <= A, is bijective

This concludes the proof. |

Exercise 53. Prove that a bilinear form a : X x Y — R on normed spaces X and Y is

continuous if and only if ||a|| := sup _a@.y) < 0. O
vexvioy [zl xllylly
yeY\{0}

The following exercise states the quasi optimality of Petrov-Galerkin schemes. We stress, how-
ever, that the quasi-optimality constant depends on the discrete inf-sup condition.

Ezxercise 54 (Céa’s Lemma for Petrov-Galerkin Schemes). We consider the weak
form (6.6) with a continuous bilinear form a : X X Y — R on Banach spaces X and Y. Let
y* € Y*. Let X}, and Y}, be finite dimensional subspaces of X resp. Y with dim X; = dimY},.
We assume the
e discrete inf-sup condition oy := inf u M > 0,
2h€Xn\{0} g, evi\foy [1Znllxlynlly
Then, there is a unique xj € X} with
alen,) =y € ¥y (6.8)
If 2 € X solves the weak form (6.6), we have quasi optimality
o —apllx < (1+[lall/an) min [lz — vpl|x, (6.9)
v €Xp
— a(z,y) -
where ||a|]| := sup ————-— denotes the continuity bound of a(-,-). O
sex\() [l |Lx 1y lly
Yy

A simple observation is that the LBB theory allows a generalization of the Lax-Milgram lemma
to the case of reflexive Banach spaces.
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Ezxercise 55 (Lax-Milgram Lemma for Reflexive Spaces). Let a : X x X — R be a
continuous and elliptic bilinear form on the reflexive Banach space X. Prove that a(-,-) satisfies
the inf-sup condition

7:= inf sup M>O

zeX\{0} yex\{o} [ x[lyllx
as well as the non-degeneracy condition
Vy e X\{0}3z € X a(x,y) #0.

For each given right-hand side x* € X*, the weak form (6.5) thus has a unique solution z € X.
O

Another observation is that for reflexive spaces, it is immaterial whether the LBB condition is
stated for the first or the second component.

Exercise 56. Let X,Y be reflexive Banach spaces and a : X xY — R be a continuous bilinear
form. Prove that the following statements (i)—(ii) are equivalent:

(i) The bilinear form satisfies the LBB condition for the first argument:

e o := inf sup a(z,y) > 0,

7eX\(0} yev\(oy =l [lylly
o Vyc Y\{0}3z € X a(z,y)#0.

(ii) The bilinear form satisfies the LBB condition for the second argument:

e a9 := inf sup M > 0,
ve\{0} zex\{0} lzllx[lylly

o Ve X\{0}Jy €Y a(z,y) #0.

Moreover, in this case there holds a; = as. O

6.2 Abstract Analysis of Mixed Formulations

Instead of the general mixed formulation (6.6), we consider linear problems with side constraints
in the following. These arise, for instance, for the Stokes problem.

Before we focus on the abstract solution theory, we explain why these problems are called saddle
point problems: Plotting a function f : R?> — R over the two-dimensional plane, we call a point
(x,y) saddle point of f if the real function f(z +t,y) has a minimum at ¢ = 0 and the function
f(x,y +t) has a maximum for ¢ = 0. This is, what is stated in the following proposition for the
so-called Lagrange functional.
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Proposition 6.5.

Leta : X x X > Rand b : X xY — R be bilinear forms on normed spaces X and
Y. Assume that a(-,-) is positive semidefinite, i.e., a(x,x) > 0 and symmetric. Then, given
(x*,y*) € X* x Y™, (z,y) € X XY is a solution of the saddle point problem

a(z,-) + blhy) = z¥eX*

b(z,-) = yreY"r (6.10)
1

if and only if the Lagrange functional L(v,w) = 3 a(v,v) —z*(v) + b(v,w) — y*(w) satisfies

L(x,w) < L(x,y) < L(v,y) for all (v,w) € X XY, (6.11)

i.e., (x,y) is a saddle point of L(-,-). In this case, the first estimate in (6.11) holds with
equality.

Proof. First, assume that (z,y) € X x Y is a solution of the saddle point problem (6.10). For
w €Y, the second equality in (6.10) implies

L(z,y) — L(z,w) =b(z,y —w) -y (y —w) =0.

This proves the lower estimate of (6.11) even with equality. For v € X, symmetry of a(-,-) and the
first equality in (6.10) prove

L(v,y) — L(x,y) = %a(m —v,x—v)+talz,v—x)—a*(v—x)+blv—1z7y) >0,
=0

and we obtain the upper estimate. Altogether, (x,y) is a saddle point of the Lagrange functional.
The proof of the converse implication follows from a classical argument from the calculus of varia-
tions: Let (z,y) € X x Y satisfy (6.11). For fixed v € X, the real function f(t) := L(z + tv,y) has
a global minimum at ¢ = 0. There holds

2

ft) =5 a(z,z) — 2% (x) + b(z,y) = y"(y) + % a(v,v) + t{a(z,v) = 2% (v) + b(v,y)}.

N —

Hence 0 = f/(0) = a(z,v) —2*(v) +b(v,y) for all v € X. This proves the first equality in (6.10). To
prove the second equality, consider, for fixed w € Y, the real function g(t) := L(z,y + tw) which
has a global maximum at ¢ = 0. There holds

g(t) = % a(z,x) — z*(x) +b(z,y) —y"(y) + H{b(z,w) —y*(w)}

and thus 0 = ¢/(0) = b(z,w) — y*(w) for all w € Y, i.e., b(x,-) =y* € Y*. [

The following theorem of Brezzi provides existence and uniqueness of the solution of saddle
point problems.
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Theorem 6.6 (Brezzi). Let X be a Hilbert space and Y be a reflexive Banach space. Let
a: XXX —=>Randb: X xY — R be continuous bilinear forms. We define Xg := {a: €
X |b(z,) =0€Y*} and assume

a(v,v)

= in ——= >0, i.e., a(-,-) is elliptic on Xy,
veXo\{o} o]k~ 7 G

e B:= inf sup M>O.
ve\{0} zex\ {0} llzllxllylly

Then, for any (z*,y*) € X* x Y*, there is a unique solution (z,y) € X XY of

CL(JE,') + b(vy) = " e X"

Moreover, we have the stability estimates
L. 1 lally . «
< — * — _— * .
el < 2l + 5 (14 520 'l (6.13)
and
1 a " a "
ol < 5 (1+ 220 (o + L2 - (6.14)

Remark. (i) Note that one can identify X* x Y* = (X x Y)* as follows: For 2* € X* and y* € Y*,
the definition 2*(x,y) := z*(x) + y*(y) yields z* € (X x Y)*. Conversely, z* € (X x Y)* gives rise
to z*(x) := 2*(x,0) and y*(y) := 2*(0,y) with (z*,y*) € X* x Y*.

(ii) If we define operators A; € L(X,X*), By € L(X,Y™*), and By € L(Y, X*) by
Az :=a(x, ), Byz:=b(z,), and Bay:=b(y),

Equation (6.12) can be written in the form

(5 %) () () 019

In this form, the Brezzi theorem states that this operator matrix is an isomorphism from X x Y
to X* x Y* = (X x Y)* and so fits into the abstract framework given above.

(iii) We stress that the original proof of Brezzi works for reflexive Banach spaces X and Y. Therein,
it is proved directly that the operator matrix from (6.15) satisfies the inf-sup condition as well as the
non-degeneracy condition. Our stronger assumption that X is not only a reflexive Banach space,
but even a Hilbert space, reduces the technical difficulties and leads to a much simpler proof. O

Sketch of Proof of Theorem 6.6. Let (z,y) € X xY. With the orthogonal decomposition
X = Xo® Xg-, we write z = x1 + 72 with 21 € X and 73 € Xy . Note that (6.12) is equivalent to
the following three identities:
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o b(za,) =y €Y,
o a(zy, ) =x* —a(xe,-) € X,
o b(-,y) =z" —a(z) +22,-) € X"

For the proof of Theorem 6.6 we are going to show that these three equations — proved in the
stated order — admit unique solutions x9 € XOL, 21 € Xg, and y € Y*. This proves existence and
uniqueness of the solution (z,y) = (z1 + x2,y) € X x Y of (6.12). [ |

The main ingredient of the proof of Theorem 6.6 is the closed range theorem:

Theorem 6.7 (Banach’s Closed Range Theorem). For an operator T € L(X,Y)
between Banach spaces X and Y, the following is equivalent:

(i) range(T) CY is closed,

(i) range(T) = (ker T*)o = {y € Y | Vy* € ker T* y*(y) =0},

(iii) range(T™) C X* is closed,

(iv) range(T*) = (ker 7)° = {z* € X*|Vz e ker T z*(z) = 0}. [ |

Proof of Theorem 6.6. The essential steps of the proof are based on operator arguments for the
operators defined by Byz := b(x,-) and By := b(-,y). We are going to consider the four operators

Bl GL(X7Y*)7 BT GL(Y**vX*)7
By € L(Y,X*),  Bje L(X*™,Y").

More precisely, the first three steps state the essential observations about these operators, whereas
the remaining proof follows the line of the sketch given before.

1. step. By is injective with closed range and ||B, ' : range(Bs) — Y| = 1/8, which follows
from Lemma 6.1 and

of | Bay|| x+
= 1n _—.
yev\{o}  |lylly

2. step. There holds By = Bj Iy, which follows from
(Bay)(z) = b(z,y) = (B1z)(y) = (Iyy)(Biz) = (Bilyy)(z) forallz e X,y €Y.

3. step. Since Y is reflexive, B} is injective with closed range(Bj) = range(Bs). Moreover, the
closed range theorem even proves

range(Bs) = range(By) = (ker B1)° = (X()° as well as range(B;) = (ker By), = Y™.

4. step. There is a unique xo € XOl with b(xe,-) = y* € Y*: According to step 3, there is at least
one x € X with b(z,-) = Bixz = y*. The decomposition xz = z; + x9 with x; € Xy and z3 € XOL
proves b(zz,-) = b(z,-) = y* € Y*, which concludes existence. To prove uniqueness, let 7o € X5
with b(Zg,-) = y* € Y*. Then, b(xg — Z2,-) = 0 € Y*, whence x93 — T3 € ker By = Xy. From
To9 — Tg € XOL, we thus obtain z9 = 7.
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5. step. There is a unique element z; € Xy with a(x1,-) = 2*—a(xz, ) € X{§ which immediately
follows from the Lax-Milgram lemma and the observation that Xg is a closed subspace of a Hilbert
space and hence a Hilbert space as well.

6. step. There is a unique element y € Y with b(-,y) = * — a(z, ), where z := z1 + x2 € X:
By construction in step 5, there holds

¥ —a(z,") € (Xo)° = {v* EX*‘V’UEXO v*(v) = 0}.
According to step 1 and step 3, Bs is injective with range(Bs) = (X()°. Thus, there is a unique
y €Y with b(-,y) = Bay = 2* — a(z, ).
7. step. There holds ||z2|x < [|y*||y+/B: From zo € Xg- follows (x5 ; -)x € (Xo)° = range(Bs).

Thus, we may choose § € Y with Boy = (w2 ; -)x. From ||By' : (Xo)° — Y| = 1/, we infer
W9lly <|l(z2; )xllx*/8 = ||lz2llx/B. Together with b(zs,-) = y*, we conclude

* * ~ ||y*||Y*
225 = (w25 m2)x = (Bay)(w2) = b(w2,9) = y* (@) < |y*ly=|l7lly < 3 |22l x

8. step. There holds |z1]|x < a7 ! (||a*||x+ + |lal||z2]lx): Note that A; € L(Xo,X{) is an
isomorphism with [|A7! @ X§ — Xo| < 1/a. From Ajzy = a(xy,-) = 2* — a(wxy, ), we thus infer

1 1
lzallx < = lla” = a2, )llxg < = (l2%llx- + llallll2]lx)-

9. step. The triangle inequality leads to

Jal 1 :
Izl < lleallx + llzallx < — ol + (10 +1) faallx < = la*llxe + 5 (T +1) "y

*

10. step It finally remains to dominate ||y||y, where Boy = b(-,y) = 2* — a(x,-) € (Xp)°. We use
By : (X0)° — Y| = 1/8 to see

1 1 HaH
lylly = Z llz" = al@, )lix- < 5 a7l + 757 lellx

IIGH 1

% L e (1 L2y
=5 (1 10 (o L2l ).

This concludes the proof. |

[Ea(PY

Remark. (i) Let By € L(X,Y*) and By € L(Y, X*) be defined as in the proof of Theorem 6.6.
In the proof, we have seen that § > 0 implies surjectivity of B;. We note that even the converse
implication holds, i.e.,

Bi= inf oz, y)

———— >0 <= B is surjective. (6.16)
ve\{0} zex\ {0} Zllx lylly

Suppose that Bj is surjective. As in step 3 of the preceding proof, the closed range theorem proves
that BY is injective with closed range. Moreover, By = By proves that Bs is injective with closed
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range(By) = range(B]) = (ker B;)° = (X0)°, i.e., By : Y — range(B>) is continuous and bijective
between the Banach spaces Y and range(B2) C X*. According to the open mapping theorem,
By : Y — range(Bs) even is an isomorphism, i.e., 37! = ||By : Y — range(Bs)| < oo, whence
6> 0.

(ii) Altogether, the two main assumptions on a(-,-) and b(-, ) can equivalently be stated as follows:
e The bilinear form a(-,-) is elliptic on Xy = ker Bj.
e The operator By € L(X,Y™) is surjective.

We hope that the reader may keep this (abstract) formulation in mind much easier. For the
statement of Theorem 6.6, we used the definition of a and 3 instead, to provide the stability
estimates (6.13)—(6.14) with explicit constants. O

Going through the proof of Theorem 6.6, one realizes that ellipticity of a(-,-) on X is only used
to provide a unique z; € Xy with a(x;, ) = 2 € X in step 5. To prove unique existence of 1,
it is, however, sufficient to assume that the operator A; : Xo — X defined by Az := a(z,-) is an
isomorphism. This is done in the following exercise.

Ezxercise 57. Let X, Y, a(-,-), and b(-, -) be as in Theorem 6.6. Then, the following statements
are equivalent:

(i) For all (*,y*) € X* x Y*, there exists a unique solution (z,y) € X x Y of the saddle
point problem (6.12).

(ii) The bilinear forms a(-,-) and b(-,-) satisfy the following three assumptions:

a(v,w)

° o= >0,

inf s —
veXo\{0} wexo\ {0y IVl x[lwllx
o Yw e Xo\{0}Fv e Xy a(v,w) #0,

e 3:= inf sup b, y)

— > 0.
ve\{0} zex\{o} |zl x [lylly

The first two assumptions state that A; : Xg — X is an isomorphism, cf. Theorem 6.2. The
assumption on [ is the same as in the above statement of the Brezzi theorem. O

The following corollary provides the relation between saddle point problems and the abstract
Petrov-Galerkin scheme from Section 6.1.

Corollary 6.8. Suppose that X is a Hilbert space, Y is a reflerive Banach space, and
a: XXX —>Randb: X xY — R are continuous bilinear forms. Then, Z := X XY is a
reflexive Banach space, and c((z,y), (T,y)) := a(z,x) + b(T,y) + b(x,y) defines a continuous
bilinear form ¢ : Z x Z — R. Moreover, for (z,y) € X XY and (z*,y*) € X* x Y*, the saddle
point problem (6.12) is equivalent to

c((x,y), (z,y) =2"(x) + y*(y) for all (z,y) € X x Y. (6.17)
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Finally, the following three statements are equivalent:

(i) a(+,-) and b(-,-) satisfy the assumptions of the Brezzi theorem, i.e.,

e av:= inf M>Owz’thXO::{xeX‘b(az,'):OEY*},
UEXO\{O}weXo\{O} o]l x [|lw]| x

o Ywe Xo\{0}Fv e Xy a(v,w) #0,

e §:= inf sup M>O.

ve\{0} zex\{o} |zl x [lylly

(ii) e(-,-) satisfies the LBB conditions
« = inf p Bw)
2€2\{0} wez\{o} 2]l z[|wl|z
o Vwe Z\{0}3z € Z ¢(z,w) #0.

> 0,

(iii) For all (z*,y*) € X* x Y, the wvariational formulation (6.17) has a unique solution
(xr,y) e X x Y.

In particular, it holds ||c|| < ||al|+2]|b|| for the corresponding norms and there exists a constant
C > 0 such that

720[% ;(1+M)(1+@)] . (6.18)

Proof. 1. step. Since X and Y are reflexive, their closed unit balls Bx C X and By C Y are
weakly compact. According to the Tychonov theorem, Bx x By and hence By are weakly compact
as well. Consequently, Z is reflexive. Moreover, it is obvious that ¢(-,-) is bilinear and continuous
with [|c]| < {la] + 2]lo].

2. step. Summing the equations of (6.12), we obtain the variational form (6.17). Testing (6.17)
with test functions of the type (z,0) or (0,%), we see that (6.12) and (6.17) are, in fact, equivalent.

3. step. The equivalence of (ii) and (iii) is stated in Corollary 6.3. The equivalence of (i) and
(iii) follows from step 2 and Exercise 57.

4. step. It remains to prove (6.18): From (6.13)-(6.14), we obtain

1. . 1 a N 1 a X a ¥
el + iy < = e+ 5 (04 09 e+ 2 (1 090 e 120 g )
B B s
[1
«

(o 2] e (1 L) (1 By e

1
L lally ¢, .. lal :
< |zt () (0 5] Dl + D lv].

!
With the operator T'z := ¢(z, -), this proves that the solution operator 771 : X* x Y* — X x Y has
operator norm ||T7!|| < C [5 (1 + ”a”> (1 + ”a”)], where C' > 0 depends only on the norms

chosen on Z = X x Y and Z* = X* x Y*. According to Theorem 6.2, it holds || T~!|| = 1/~. This
concludes the proof. |
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Ezxercise 58. Give a direct proof that c(-,-) from Corollary 6.8 satisfies the LBB condition,
i.e., prove directly that (i) implies (ii). Hint. For (z,y) # 0 use the orthogonal decomposition
r =1z + 22 € Xo + X5 and estimate |z1]/x, ||z2|/x, and ||y||y separately. O

Corollary 6.8 together with Exercise 54 provides a solvability theory and the Céa lemma for
Galerkin discretizations of saddle point problems.

Corollary 6.9 (Céa Lemma for Saddle Point Problems, Version I). Leta: X x X —
Rand b: X xY — R be continuous bilinear forms on a Hilbert space X and a reflexive
Banach space Y. Given (z*,y*) € X* x Y*, let (z,y) € X xY be a solution of the saddle
point problem (6.12). Let Xj, C X and Y}, C Y be finite dimensional subspaces and define
Xop, i= {azh € Xy | b(xp,-)=0¢€ Y}Z‘} Suppose that

o oy = inf sup —a(vhjwh) >0,
R €Xon\{0} wy, e X0\ {0} VR x [[whll x
b
.« B = inf @hyn)

su _
un€Yi\{0} 2 e x,\ (o3 [1Znllx [lynlly

Then, there is a unique solution (xp,yp) € Xp X Yy, of the discrete saddle point problem

a(xp,-) + b(,yn) = x*e€Xj,
6.19
b(xh, ) = y*e Y};k, ( )

and there holds

o = @nllx + ly = wlly < € (_min llz = llx + min lly - Gally )
ThEXH yhex/h

h

The constant C > 0 depends only on (||a||+]0]])/yn with p, := [é—k% <1+M)% <1+%)}

ap

Proof. The existence and uniqueness of (xp,yp) follows from the abstract Brezzi theorem; see
Corollary 6.8. For Petrov-Galerkin schemes, the constant in the Céa lemma depends only on the
quotient of the continuity bound and the discrete inf-sup constant; see Exercise 54. Both constants
have been estimated in Corollary 6.8. |

Remark. The Galerkin discretization of saddle point problems is structurally much more difficult
than for problems of the Lax-Milgram lemma:

(i) Note that Xon, € Xo := {v € X |b(v,-) =0 € Y*}. There may be even no relation between X

and X, besides the trivial Xg N X} C Xgp. In particular, there is no relation between « and «y,

even if a(-,-) is elliptic on Xj.

(ii) However, if a(-,-) is already elliptic on X, i.e., 7 := infyc x\ (0} % > 0 this implies a > 7 and
X

aj, > 7 for the continuous and discrete inf-sup constant of af(-,-).

(iii) Moreover, 8 > 0 from the continuous formulation does not imply B, > 0 for the discrete
formulation. Below, we introduce Fortin’s criterium which provides some help on this matter.
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(iv) Finally, we recall that 85 > 0 implies necessarily dimY},, < dim X}; see Proposition 6.4. O

Ezercise 59. For a matrix A € R™*" holds ker(A”) = (rangeA)* as well as range(AT) =
(ker A)*, where (-)* denotes the orthogonal complement with respect to the usual Euclidean
product in R" resp. R™. O

The following two exercises consider the discretization of the mixed problem (6.12). We stress
that a linear system similar to the one here, also appeared for the discretization of the Neumann
problem, where we had to realize the linear side constraint fQ up dr = 0.

Exercise 60. Let a: X xX — Randb: X xY — R be continuous bilinear forms on a Hilbert
space X and a reflexive Banach space Y. We replace X and Y by finite dimensional subspaces
X}, and Y}, respectively. Show that the computation of a discrete solution (zp,yn) € Xn X Y3
of

CL(%’h, ) + b(7 yh) = x* € X;;7

2
b(n, ) = yeyy (6:20)
. . . . . : A BT
is equivalent to the solution of a linear system with a matrix of the type M := B o) O
> nxn mXxn A BT 3 141
FEzxercise 61. Let A €¢ R"™*" B e R ,and M = B o) Assume that A is positive
definite on the kernel of B. Prove that M is regular if and only if range(B) = R™. i

We conclude this section with an improved Céa lemma for saddle point problems; cf. Corol-
lary 6.9.

Theorem 6.10 (Céa Lemma for Saddle Point Problems, Version IT). Leta: X xX —
Randb: X XY — R be continuous bilinear forms on a Hilbert space X and a reflexive
Banach space Y. Given (x*,y*) € X* x Y*, let (z,y) € X xY be a solution of the saddle
point problem (6.12). Let Xj, C X and Y}, C Y be finite dimensional subspaces and define
Xop, i= {azh € Xy | b(xp,-) =0¢€ Y};"} Suppose that

a(vp, vp)

o qp = inf —— 0 >0
vrR€Xor \{0} thH?X' 7

e B, = inf b(&n, Yn)

u — > (.
un€Yi\0} o, ex,\ {0y [1Znllxlynlly

Then, there is a unique solution (xp,yn) € Xp X Yy, of the discrete saddle point problem

CL(%’h, ) + b(7 yh) = x* € X;;7

6.21
b(xp,-) = y*eYy, (6.21)
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and there holds
|z — zp|lx < (1 + M) (1 + M) min ||z — T x M mln ly — gnlly (6.22)
ap B/ zhexy
and
b
Iy =l < (1 B0 min 1y =l + 220 o — (6.23)
Br / ney; Bh

Sketch of Proof of Theorem 6.10. The unique existence of a discrete solution (xp,yp) €
X, x Yy, follows from the Brezzi Theorem 6.6 applied for Xj, X Yj. The quasioptimality is proven
in three steps:

o First, we prove estimate (6.23).

e Second, we prove quasioptimality of |z — x||x with respect to the affine space Zp, := {fh S
Xy ‘ b(fh, ) = y* S Y;}

e In a final step, we estimate the bestapproximation error with respect to Z; by the bestap-
proximation error with respect to the entire discrete space X} which then leads to (6.22).

This general concept even works for nonlinear problems with linear side constraint. |

Proof. We first note the Galerkin orthogonality, which now reads

CL(!E—IEh,‘) + b(7y_yh) = OGX;;7
b(x — xp, ") = 0eYy, (6.24)
1. step. There holds
b
o= < (14 B0) by =gl + Ll o — e tor at i e v

According to the definition of 5y, there holds

~ b(Zh, yn — Yn
Bullih —vnlly < sup  EnIn = yn)
snexfor  llznllx

With the Galerkin orthogonality, the nominator may be written as

b(Zn, gn — yn) = —(a(z — xp, Tn) + 6(Zn,y — yn)) + 0(Tn, Un — yn)
= —a(x — zp, Tp) + b(ZTh, yn — y)

Therefore, continuity of a(-,-) and b(-,-) lead to
Brllgn = ynlly < llallllz — znllx + [1115n — ylly-

Altogether, a triangle inequality ||y — ynlly < lly — nlly + ||[gn — ynlly yields step 1.
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2. step. With the affine space Zj, := {:Eh e Xy, ‘ b(xp, ) =y* € Y}Z‘}, there holds

a b
|z — zp||x < (1 + U) |z — znll x ” ” Hy ynlly forall z, € Zj and yp, € Y}, :

Since xy, zp, € Zp,, there holds xp, — 2z, € Xop. According to the definition of «ay,, we see
anllzn — znl% < alzn — zn,x2n — 21) = alzy, — x, 20 — 21) + alz — zp, 2, — 21).
For the first term, the Galerkin orthogonality implies
a(xp — x, 2 — 20) = 0(Th — 21,y — Yn) = b(Tn — 20, Yn — Yn) + (T — 21,y — Un),

where the first summand b(zp, — 2zp, yp, — yn) = 0 drops out by use of xp, — 2, € Xop. By continuity
of a(+,) and b(-,-), we see

apllen — znllx < llallllz — znllx + blllly — ally-

Again, a triangle inequality ||z — zp||x < ||z — znl|x + ||zn — 21| x yields step 2.
3. step. There holds

|z — zp]|lx < < H H) |z — Zp||x for all T, € X}, and some zj, € Z}, depending on T, :

We define Wy, := (Xon)*+ € X3 and consider the operators By € L(W,,Y7) and By € L(Yy,, W)
defined by Bywy, := b(wp, -) and Boyy := b(+,yp). Note that

0<B = inf “u b(Zn,yn) o b(wn, Yn)

in sup
Th €Y \{0} xheXh\{O} 1Zn )| x NTRlly 0V MO} wpewy\gor lwnllx[|Tnlly

According to Lemma 6.1, the operator By is injective with closed range and 1/8, = |By*
range(Bz) — Y||. From this, we derive that B; = Bj o Iy, is surjective due to range(B;) =
range(B3) = (ker B2)° = Y;*. Note that by definition of W}, := (Xo,)* C X}, the operator By is
injective and thus an isomorphism between W}, and Y}*. In particular, this yields bijectivity of By
as well as

1B = [y, (B3) ™M = 1B ) Il = 1Bl = 1/ B

In particular, there is a unique element wy, € W), with b(wy,-) = Biwy, = b(x — Zp,-) € ¥}" and
there holds |Jwy||x < 8, |b(z — Zn, )|l x+ < (|[bll/Br) & — Znl|x. The element 2, := T, +wy, € X,

satisfies b(zp,-) = b(x, ) = y* € Y;* and thus 2z, € Z;,. Now, we finally see

o= 2l < llo = Fallx +lhunlx < (1+ B0 o -5

This concludes step 3.
4. step. The proof of (6.23) follows by finite dimension: Note that step 1 implies

Iy —nlly < (1+50) int =Gy + L2 o = anllx,
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and it only remains to see that the infimum is, in fact, attained: To that end, choose an infimizing
sequence (yg) in Yy, i.e.

lim [ly —yilly = inf |ly —ynlly-
k—oo thYh

According to the triangle inequality, there holds ||yklly < |lylly + |lv — yklly, i-e. the sequence
(yx) is a bounded sequence in the finite dimensional space Y. Thus, the Bolzano-Weierstrass
theorem yields the existence of a convergent subsequence (yj,) with limit yo € Y},. By continuity,
we conclude

_inf ly —wally = lim [y — y&,|ly = ly — volly-
thYh {—o0

5. step. The proof of (6.22) now follows from a combination of step 2 and step 3: For arbitrary
T, € X}, choose zp, € Zj, by use of step 3. Let 45, € Y}, and be arbitrary. We then infer

a b -
|z — 2pllx < (1 + U) |z — znl|x + Lol ly = Unlly
ayp, ap

a b - b -
< (e By o B g 2y gy
ap, B ap,
Now, we take the infimum over Z; and ¥; and note that, according to finite dimension, this infimum
is attained by independent minima. |

6.2.1 Discrete inf-sup conditions

Often, the continuous inf-sup condition is not that hard to prove, but the discrete one is the
problem. The next two lemmata provide a tool to derive the discrete inf-sup condition from the
continuous condition.

Lemma 6.11 (M. Fortin). Let b : X xY — R denote a continuous bilinearform which
satisfies the continuous inf-sup condition

inf s bu, V)

up ———— =7 > 0. 6.25
0ANEY ouex |[ullx M|y (6:25)

Let X, C X and Y, CY denote closed subspaces and let I1 : X — X}, denote a linear mapping
with

b(u—Tu,A) = 0 VYAeY, (6.26)
[Mullx < Cullullx Vu € X. (6.27)
Then, there holds
inf  sup M > YN = e > 0.

0£NEY: 02uex,, [lullx IAlly C
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Proof. Let A € Y}, and note

(6.25) b(v,\) (6.26 b(ITv, A
ozvex [vllx o£vex  |[vllx
(6.27) b(Ilv, A\ b(v, A b(v, A
< Cp sup b(Ilv, ) =Cn sup (v, 2) < Cp sup (v, 2)
0£veX ”Hv”X 0#vErangell HU‘ X 0#veXy, HU‘ X
|
Often, it is easier to generate the operator II in two steps, as done in the following lemma.
Lemma 6.12. LetIl;: X — X}, i =1, 2 denote linear mappings with
HHluHX < ClﬂuHX YVue X
HHQ(I — Hl)uHX < CQ”UHX YVue X
b(u —Iau,N) = 0 VA €Y.
Then, (6.25) implies the discrete inf-sup condition
inf  sup bu, ) > T
oA, o inec, Tulx My = Cr+ G
Proof. Let A € Y}, and define IT : X — X, via [lu := IIo(I — II;)u + II;u. Then, we have
b(Mu, A) = b(Ia(u — IMyu), A) + b(ILyu, A) = b(u — yu, A) + b(IT1u, ) = b(u, A).
Moreover, there holds
Mullx < [[Ho(I —I)ullx + [Thullx < (C1 4 C2)lullx-
This concludes the proof. |

6.3 The Stokes problem

6.3.1 Setting

We apply the general theory of saddle point-problems from the previous section to the Stokes
problem: Let Q C R? be a Lipschitz domain. Find u = (u1,u2) € HE(Q) x H(Q) and p € L?(Q)
such that

-Au+Vp = f in Q (6.284a)
Veu = 0 inQ (6.28b)

for given f = (f1, f2)" € L*(Q) x L*(Q). Here, the operator —A is understood component wise,
ie. Au= (Auy,Auy)’.
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Remark. From a physical perspective, u denotes the velocity and p the pressure of a fluid in a case
where an equilibrium has been reached and the quantities do not depend on time anymore. The
incompressibility condition V-« = 0 implies that the fluid can not be compressed (e.g. water). The
equation —Au+Vp = f describes conservation of momentum. The stationary Stokes problem (6.28)
stems from a severe simplification of the Navier-Stokes Equations and are physically meaningful

only in slow flowing fluids with high viscosity, e.g., honey. O
A weak form can be formulated as
/Vu : Vv—/pv-v = /fv Yo € (H3(Q))? (6.29a)
Q Q Q
—/ ¢V-u = 0 VgeL*Q). (6.29b)
Q

Obviously, the pressure is unique only up to an additive constant and hence one usually chooses to
satisfy fQ p = 0. This motivates the choice of space

12(Q) = {p e L¥Q)| /Q p=0}. (6.30)

With this side-constraint, (6.29) is equivalent to the problem: Find (u,p) € (H(Q))? x L2() such
that

a(u,v) +b(v,p) = a*(v) Yo € (H3())? (6.31a)
b(u, q) = 0 Vge L), (6.31b)
where
a(u,v) = / Vu: Vo (6.32a)
Q
bv,p) = — / pV v (6.32b)
Q
Existence of a unique solution for the Stokes problem results from Theorem 6.6 together with the
following theorem. (Note that the bilinearform a(u,v) satisfies a(u,u) = || Vul%, @ and is hence
elliptic.)

Theorem 6.13 (deRham). Let Q be a Lipschitz domain and recall the bilinearform b(-,-)
from (6.32). Then, there exists v > 0 such that

inf su [b(v, w)]
b
0£p€L3 () oue(mp (@) 1Pz V]l @)

>~y > 0.

6.3.2 FEM for Stokes

The finite element method corresponding to (6.31) reads: For X;, C (H{(Q))? and Y, C L2(Q) find
(up, pn) € Xp X Yy, such that

a(up,v) +b(v,pp) = 2*(v) Vv e X, (6.33a)
b(un, q) =0 Vg € Yy, (6.33b)
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From the abstract theory of saddle-point problems (particularly Theorem 6.6) we know that the
discrete spaces also need to satisfy an inf-sup condition, i.e.

b
inf  sup (v.p) >y, > 0. (6.34)

0#£p€Yi ozvex, IPl2@)llvllm (@)

Particularly from the Céa Lemma for saddle-point problems (Theorem 6.10), we want to choose
discrete spaces which lead to the same rate of convergence

i B inf _ .
Jof Jlu—vlm@,  inf llp—dllzae

This motivates the choice X, = (S3(7))? and Y3, = P°(T) N L%(Q). However, this choice does not
satisfy a discrete inf-sup condition as we will show using a version of Euler’s formula for planar

graphs.

Theorem 6.14. Let T denote a regular triangulation of a simply connected domain Q2. Then,
there holds

HT =2#(KNQ) +#(KLNOIQ) — 2.

With this, we see
dim(Yy,) = #T — 1 =2#(KNQ) + #(KNoQ) — 3 =dim(X,) + #(K N o) — 3.
Since # (K N 0N2) — 3 > 0 for all meshes with more than one element, we see dim(Y}) > dim(Xp).

This contradicts the inf-sup condition (see also Proposition 6.4) and hence this discretization does

not lead to regular linear systems.
In the following, we discuss a couple of valid choices of discrete spaces.

Theorem 6.15 (Taylor-Hood-type element). Let T denote a reqular triangulation of
Q. Let

Xo = (S3(M)’, Yi, := PO(T) N L2(Q).
Then, there exists a constant v > 0, which depends only on the shape regularity of T such that
inf  sup b, p) > > 0.

0£pEVh 0£ue Xy 1Pl 22 (@) 1wl 5 ()

Proof. We apply Lemma 6.12. For that, we choose II; : (H}(Q))? — (S§(T))? C X, as the
Scott-Zhang interpolation operator (or any Clément operator). Particularly, this shows

|lu—Thulp2ry < Chrllullp,y VT ET,
Thullgi) < Cllullgq)-

The operator Il is defined elementwise via

hu € (S3T))? (6.35a)
(Mu)(V) = 0 YV eN(T) (6.35b)
/ng —u = 0 Ve € E(T). (6.35¢)
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Obviously, II, is a well-defined linear operator. Moreover, a scaling argument shows for all T' € T
that

Mow|Z2 () < ChEI(TMau) 0 @722, ) < ChElluo @122, ) < Ch7lluo @13 g,

ref

= Ch} o @12, )+ IVuo @rldar, |

< C’||uHL2 + C’hTHVu||H1 ) as well as
HVHQUHLZ < CIV(lau) o (I’T”L2(T < C|V(Ilau) o ‘I’TH%Z(Tref) <---<C hc?2HU|’2L2(T) + HVU”%p(T)] :
Altogether, this shows

ITgwll iy < C [hpt ullp2ery + [l er)) Vu e (H'(T))*.
This implies
T2 (I = Th)ull g1y < Chptlu = Thul| 2y + Cllu = Wyl gi(ry < Cllull g g,

Summing up over all T' € T shows |[Hz(I — Iy )ul| g1 (q) < Cllullg1(q)
For p € Y, und u € (HE(Q))?, we obtain

b(u — Iau, p) Z/ (u—Tou) = Z/@ (u—Tau) - np — /Vp (u —Tlou) = 0.
T

TeT TeT

=0by construction of Il

Theorem 6.16 (MINI-Element). Let T a reqular triangulation of . Let Bz :=
{u € H'(Q) | u|r o @1 € span{bz}}, where b3 is the cubic element bubble function bz(z,y) :=
xy(l — x — y) on the reference triangle Tyer. Let

— (S§(T) + Bs)*, Yy, = SHT) N L2(Q).
Then, there exists a constant v > 0, which depends only on the shape regularity of T such that

inf  sup b, p) >~ >0.

0#pEYh 0£ueX Hp”L2 HUHHl(Q)

Proof. Again, we use 6.12. Let II; denote again the Scott-Zhang operator. The operator Il
is defined elementwise as follows: The bubble-functions by := b3 o (ID;l satisfy suppbr C T und
Bs = span{br | T € T}. We define

1
H2u|T = b ( fTul >,

fT u2

with u = (u1,ug). Then, there holds

I, : (H}(Q)? — B? is a linear operator
Moullz2ry < Cllullgzry YT €T
<

T2l g1 (1) Chi'llullgzery VT €T,
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Analogously to the proof of Theorem 6.15, we obtain ||z (I — 1 )ul| g1 () < Cllul| g1 (). Moreover,
for p € SY(T):

bu—Ilau,p) = / pV - (u—TIlau) = / p(u — au) —/ Vp - (u—1au)
Q o0N Q
—_—
=0 due to boundary condition

= Z Vplr -(u—Tlau)
TeT K:constant

by construction of Il

0

The most widely used discretization for Stokes is the following Tayler-Hood element.

Theorem 6.17 (Taylor-Hood). Let T denote a regular triangulation such that each
element T € T has at most one edge on 0f). Define

X5 = (S3(T))?, Yy, == SY(T) N L3(Q).
Then, there exists a constant v > 0 which depends only on the shape regularity of T such that

inf  sup (. p) >y > 0.

0£p€Yh 0tue Xy 1Pl L2 lull i)

6.4 Further remarks on mixed methods

Mixed methods can be useful if a direct discretization of a problem is difficult. We demonstrate
this for the biharmonic equation:

A%y = f in Q, (6.36a)
u = 0 on 0N (6.36b)
Ohu = 0 on 0N (6.36¢)

The classical weak form of the biharmonic equation is
Find u € H2(Q) such that / AulAv = / fo Vo € H2 (). (6.37)
Q Q

To derive a FEM for the above problem, we need to choose discrete subspaces Xj, C Hg(Q) Note
that the standard spaces S5 ¢ H?(Q2) do not work. By ensuring C'-regularity over element in-
terfaces, it is possible to construct piecewise polynomial spaces which are subspaces of H?(€2) (for
example the Argyris-element or the Hsieh-Clough-Tocher-element). However, such an implemen-
tation is complicated and not very popular among users. It is easier to change the weak form.
To that end, we introduce a new variable 0 = —Awu. This leads to the following problem: Find
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(u,0) € H(Q) x H() such that
Vo -Vuw = / fw Yw € HY (), (6.38a)
)
Vu- Vv — / ov = 0 Vo € HY(Q) (6.38b)
Q

Without looking into the solution theory of the mixed FEM, we note that we want to find (u,0) €
H}(Q) x HY(Q). Hence, we only need to choose finite dimensional subspaces of H(Q) x HY(Q),
which can be done by using classical polynomial spaces.

6.5 The Garding inequality

Often, an elliptic problem is perturbed by a lower order term such that the resulting problem is no
longer elliptic but satisfies a Garding inequality.

Definition. Let Xy, X1 denote Hilbert spaces with compact embedding X1 C Xgy. A bilinearform
a: X1 X X1 — R satisfies a Garding inequality if there exist constants Cy, C7 > 0 with

a(uu) > Cillulk, — Colullk, — Vue Xi.

Problems which satisfy a Garding inequality arise for example if one considers PDEs with lower
order terms.

FEzxzercise 62. Consider

—Au—b(z) -Vu+c(z)u = f inQ,
u = 0 on 0N

Show that the corresponding bilinear form satisfies a Garding inequality with X; = H}(Q2) and
Xo = L%(Q). O

We use the following result from functional analysis:

Exercise 63. Let X, Y denote Banach spaces and let K : X — Y be a compact operator. Let
(TIx)ven a sequence of linear operators Iy : Y — Y with [[IIy] < 1 and Iy — Id pointwise
(i.e. impy_yo0o Iyu = u for all w € V). Then, there holds

lim [|(Id —I1,)K|ly.x = 0.
N—o0

a

For well-posed problems (i.e. the continuous equation has a unique solution) with Garding
inequality, the following result shows that their discretization is asymptotically quasi-optimal.

Theorem 6.18. Let X1, Xo be Hilbert spaces with compact embedding X1 C Xg. Let
a(-,-) satisfy a Garding inequality and let the induced operator A : X1 — X{, Au := a(u,-) be
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bijective. Let (Xp)p>0 C X1 denote a sequence of closed subspaces such that

li inf — =0 Yu € X;,.
lim, inf flu—vlx, uE Xp

Then, there exists hg > 0 and v > 0 such that for all 0 < h < hg

inf sup a(u, v)

LS L)
ueXn vex,, |[ullx, vl x,

In particular, there holds for the FEM error

ol |
- < (1+ 20 inf fu—
o=l < (1220 ing ol

Proof. Step 1: We show that there exists C > 0 such that for all u € X1 we find v € X7 of the
form v = u + z such that

a(u,v) = alu,u+z) > Cl\|u||§<l (6.39)
blx, < Clulx,. (6.40)
The choice of z is motivated by the Géarding inequality a(u,u) > Ci|lul%k, — Collull%,, i-e
a(u,u+ z) = a(u,u) + a(u, z) > Ci|lul%, — Collul%, + alu, 2).
Hence, we choose z € X as solution of the (adjoint) problem
Find z € X; s.t.  a(w, z) = Co(w, u) x, Vw € X

In operator notation, this reads as
A"z =Ku,

where A : X; — X] is induced by the bilinearform a(-,-) and K : X; — X7 is defined via
<'7KU>X1><X{ = (-, Cou) x,-
We note that
(i) Since A is bijective, also AT bijective and [[A~T|| = [A7Y.
(i) Since X; C X is compact, also K : X; — X/ is a compact operator.
The operator A~ K : X; — X, which maps u to z is compact. We obtain
a(u,v) = a(u,u+z) > Cilulk,

lullx, + lzllx, < (1+ 1A7TK]) llulx,.

IN

[[0l]x,

Step 2. For given u € X}, we construct v € X}, such that

Cq

alw0) > Ll

v

”U”Xl < CHu”Xl
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Let II, : X1 — X}, denote the orthogonal projection (in X7). Following Step 1, we define v =
u+ Iy z € X}, for given u € Xj,. This shows

a(u,v) = a(u,u+2)+a(u,lyz - 2) > Cil|ullk, = llalllullx, |(1d ~T1,)z||x,
> Cillulk, — llallx, 1(1d ~T1) A~ TK]|ulk,

Since K is compact and A~ bounded, also their composition is compact. Since Id —IIj, converges to
zero pointwise (according to the assumption), we obtain with Exercise 63 that limy,_,q ||(Id —II;,) A~ TK|| =
0. Hence, there exists hy > 0 (independently of u) such that all 0 < h < hq satisfy

Ch
a(u,u+T0z) > == [lul%,
Furthermore, v = u + Il 2z € X}, satisfies
-7
[vllx, < llullx, + Mrzllx, < flullx, + [[2llx, < 3+ A7 K[D[[ullx, -

Step 8: This shows the discrete inf-sup condition. Quasi-optimality follows from the Céa lemma. l

A bilinear form which satisfies a Garding inequality does not necessarily induce a bijective operator.
A famous result from functional analysis states however, that injectivity implies already bijectivity.

Theorem 6.19 (Fredholmalternative). Let a denote a bounded bilinearform on the
Hilbertspace X1, which satisfies a Garding inequality. Let the induced operator A : X1 — X]
be injective, i.e.

a(u,v) =0 Yv e X = u=0.

Then, A is already bijective.

Proof. The Garding inequality states

a(u,u) > Cillullk, — Collulk,
Consider a : X7 x X7 — R defined by

a(u,v) = a(u,v) + Co{u,v)x,

Due to the Lax-Milgram Lemma a(-,-) induces a bijective operator A:X| — X'. The difference
K:=A —A:X; — X] is compact since

(K’LL, ’U>X{ xX1 — Co <u7 U>X0
and X7 C Xj is compact. Hence A reads as
A=A-K=A (Id—f&‘lK>.
The injectivity of A implies that 1 is not an Eigenvalue of the compact operator A-'K. The theory

of compact operators shows that this implies that Id —A~'K is invertible and hence A is bijective.
|

126



Bibliography

[Bra] Dietrich Braess: Finite elements. Theory, fast solvers, and applications in elasticity theory,
Cambridge University Press, Cambridge, 2007.

[McL] William McLean: Strongly elliptic systems and boundary integral equations, Cambridge Uni-
versity Press, Cambridge, 2000.

127



BIBLIOGRAPHY

128



Appendix A

Some Facts from Functional Analysis

I this appendix we collect some results from introductory functional analysis courses which are used
throughout. We stick with the case of vector spaces over R.

A.1 Main Theorems from Functional Analysis

Theorem A.1 (Hahn-Banach Extension Theorem). Letp : X — R be a sublinear
functional on a linear space X, i.e. p(x +y) < p(z) + p(y) and p(Ax) = A\p(z) for all z,y € X
and A\ > 0. If Y is a subspace of X and f : Y — R is a linear functional with f < p onY,
there is a linear extension F : X — R with Fly = f and F < p on X. |

If X is a normed space and f € Y*, one may choose p(z) = ||z|/x||f|x* to prove the extension
theorem for continuous linear functionals.

Corollary A.2. IfY is the subspace of a normed space X and f € Y™, there is an extension
F € X* with Fly = f and | F||x+ = || f]|ly*- |

One then considers the subspace Y := span{z} and f(Azx) = A||z||x to derive the following
corollary:

Corollary A.3. If X is a normed space and x € X, there is a linear functional f € X™* with

[fllx+ =1 and f(z) = ||z]lx = Wi | ()] u

Theorem A.4 (Hahn-Banach Separation Theorem).  Let X be a normed space, and
let A and B be convex, nonempty subsets of X with AN B = ().

(i) If A is open, there is a linear functional f € X* and a scalar A € R such that f(x) < A\ <
fly) forallz € A and y € B.

(ii) If A is compact and B is closed, there is a linear functional f € X* and scalars A1, 2 € R
such that f(x) < A < A2 < f(y) forallz € A andy € B. [ |

If Y is a subspace of X, one can use (ii) to characterize the closure Y of Y in X. The proof
only needs that each bounded linear functional f € Y* is trivial, i.e. f|y = 0.
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Corollary A.5. LetY be a subspace of the normed space X. Then, x € X satisfies x € Y if
and only if f(x) =0 for all f € X* with fly =0.

Proof. For x € Y and f € X* with f|y = 0, continuity yields f(z) = 0. The converse implication
is proven by contradiction: We assume that z € Y and choose f € X* such that f(z) < A < f(y)
for all y € Y and some fixed A € R. Using that Y is a vector space, we infer that A < f(+y) =
—f(Fy) < —X and thus f(y) € [\,—)] for all y € Y. As bounded linear functionals are trivial,
we obtain f|y = 0. According to our assumptions, this implies f(z) = 0 and thus contradicts
f(x) < A< f(0) =0. n

The following corollary is an immediate consequence of the last one.

Corollary A.6. LetY be a subspace of the normed space X. Then, Y is dense in X if and
only if each functional f € X* with fly =0 is trivial, i.e., f =0 € X*. |

For an operator T' € L(X;Y), one defines (T*y*)(x) := y*(Tx) for all y* € Y* and z € X.
From the continuity of T', we see that T*y* € X*, and obviously T : Y* — X™ is a linear operator.
From the corollary of the Hahn-Banach extension theorem, we derive for the operator norm

7%l = sup  [[T"y*|lx- = sup sup (T"y")(x)
lly*lly==1 ly*lly =1zl x=1

= sup sup (y*)(Tx) = sup |[Tz|y =T,

lzllx=1[ly*[ly==1 llzllx=1
i.e. there holds T* € L(Y™*; X*) with operator norm || T%*|| = ||T'||]. The operator T™* is called the
adjoint operator of T'.
Theorem A.7 (Banach Closed Range Theorem). For an operator T € L(X;Y)

between Banach spaces X and Y and T* € L(Y*; X*) its adjoint, the following is pairwise
equivalent:

(i) range(T) is a closed subspace of Y.

(i) range(T) = (ker T*)o := {y € Y | Vy* € ker(T*) y*(y) =0}.

(iii) range(T™) is a closed subspace of X*.

(iv) range(T*) = (ker T)° := {z* € X* |V € ker(T) xz*(x) = 0}. |

A.2 Hilbert Spaces

A space X is called Hilbert space if it is a Banach space whose norm is induced by a scalar
product.

Theorem A.8. LetY be the closed subspace of a Hilbert space X and Y+ := {:E .4 ‘Vy €
Y (z;y)x = 0} the orthogonal complement. Then, there holds X =Y @Y+ in the sense of
the linear algebra, i.e. every element x € X has a unique decomposition x =y + y* with some
yeY andyt € Y+, [ |
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With the orthogonal decomposition X =Y @ Y1, one can define a projection 7y : X — Y by
r=y+y- =y

Corollary A.9. LetY be the closed subspace of a Hilbert space X. Then, there is a unique
linear operator 11 : X — Y with U|y = id and ker(Il) = Y, which is called orthogonal

projection onto Y. This projection is continuous with operator norm ||II|| = 1 and symmetric,

ie. (x;y)x = [z ;y)x for allz € X and y € Y. Moreover, the orthogonal projection is the

solution operator for the best approzimation problem, ||z — x| x = mi}r/l lz —yllx- |
ye

The dual space X* of a Hilbert space X has a straight-forward representation, and one can
somehow identify X with X*.

Theorem A.10 (Riesz). For a Hilbert space X, the Riesz mapping Ix : X — X7¥,
Ixx = (z;)x € X*, is an isometric isomorphism. [ |




