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Chapter 1

Introduction

1.1 Strong Form and Variational Form

The finite element method is a scheme for the numerical solution of partial differential equations.
In this chapter, we introduce the basic concepts for elliptic problems in the frame of the Riesz
theorem. To that end, we consider the most standard example, namely the Poisson equation with
mixed Dirichlet-Neumann boundary conditions. We aim to solve

−∆u = f in Ω,

u = 0 on ΓD,

∂u/∂n = φ on ΓN ,

(1.1)

which is said to be the strong form of the boundary value problem. Here, Ω denotes a domain
in Rd, d = 2, 3. The boundary Γ := ∂Ω is split into the Dirichlet boundary ΓD and the Neumann
boundary ΓN , respectively. To be more precise, we assume that ΓD and ΓN are (relatively) open
subsets of Γ with ΓD ∩ ΓN = ∅ and Γ = ΓD ∪ ΓN . The source term f : Ω → R as well as the
Neumann data φ : ΓN → R are given, and u : Ω → R is the unknown solution. Moreover,

∆u(x) :=

d∑

j=1

∂2u

∂x2j
(x) (1.2)

denotes the Laplace operator, which is defined in the classical sense for a function u ∈ C2(Ω), where
Ck(Ω) :=

{
w|Ω

∣∣w ∈ Ck(Rd)
}
. If u ∈ C2(Ω) solves (1.1), u is said to be a strong solution of the

mixed boundary value problem.
Throughout the lecture, we shall assume that Ω is a Lipschitz domain in Rd, i.e.,

• Ω is a bounded, open, and connected subset of Rd,

• Ω is locally on one side of Γ,

• Γ can locally be parametrized by Lipschitz continuous functions.

An important consequence of this assumption is the validity of the integration by parts formula
∫

Ω

∂u

∂xj
v dx+

∫

Ω
u
∂v

∂xj
dx =

∫

Γ
uvnj ds for all u, v ∈ C1(Ω), (1.3)
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CHAPTER 1. INTRODUCTION

where nj denotes the j-th component of the outer normal vector of Ω on Γ and where ds denotes
the surface measure on Γ. For a precise definition and details, we refer, e.g., to [McL].

Let u ∈ C2(Ω) be a strong solution of (1.1) and v ∈ C1
D(Ω) :=

{
w ∈ C1(Ω)

∣∣w|ΓD
= 0

}
.

Multiplication of −∆u = f by v, integration over Ω, and integration by parts yield that

∫

Ω
fv dx = −

∫

Ω
(∆u)v dx = −

d∑

j=1

∫

Ω

∂2u

∂x2j
v dx =

d∑

j=1

[ ∫

Ω

∂u

∂xj

∂v

∂xj
dx−

∫

Γ

∂u

∂xj
vnj ds

]
.

With x · y =
∑d

j=1 xjyj the usual scalar product in Rd, we obtain the first Green formula

∫

Ω
fv dx =

∫

Ω
∇u · ∇v dx−

∫

Γ

∂u

∂n
v ds, (1.4)

where we have used ∇u ·n = ∂u/∂n. Together with v|ΓD
= 0 and ΓN = Γ\ΓD, we may plug-in the

Neumann data to see that
∫

Ω
fv dx =

∫

Ω
∇u · ∇v dx−

∫

ΓN

∂u

∂n
v ds =

∫

Ω
∇u · ∇v dx−

∫

ΓN

φv ds.

Altogether we thus have proven the following proposition:

Proposition 1.1. Let u ∈ C2(Ω) solve the strong form (1.1). Then, it holds that

∫

Ω
∇u · ∇v dx =

∫

Ω
fv dx+

∫

ΓN

φv ds for all v ∈ C1
D(Ω), (1.5)

which is the variational form of the boundary value problem (1.1). �

This proposition gives a necessary condition for a function u to solve the strong form (1.1).
We stress that any strong solution belongs to C1

D(Ω) and that the variational form (1.5) can be
understood for u ∈ C1

D(Ω). This leads to a symmetric variational formulation: Find u ∈ C1
D(Ω)

such that (1.5) holds.

Exercise 1. Prove the following well-known integral formulae:

• For f ∈ C1(Ω)d, let div f :=
∑d

j=1
∂fj
∂xj

denote the divergence operators. Then, there

holds the Gauss divergence theorem

∫

Ω
div f dx =

∫

Γ
f · n ds for all f ∈ C1(Ω)d. (1.6)

• Besides the first Green formula, there holds the second Green formula

∫

Ω
(−∆u)v dx+

∫

Γ

∂u

∂n
v ds =

∫

Ω
u(−∆v) dx+

∫

Γ
u
∂v

∂n
ds for all u, v ∈ C2(Ω). (1.7)

Both are easily obtained from the integration by parts formula. ✷
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1.2 Solvability of Variational Form

To look for solutions of the weak form (1.5), we will employ the following Riesz theorem.

Theorem 1.2 (Riesz). For a Hilbert space H (over R), the mapping

IH : H → H∗, IH(u) := (u ; ·)H (1.8)

is linear, isometric, and bijective, i.e., for any F ∈ H∗ there is a unique u ∈ H such that

(u ; v)H = F (v) for all v ∈ H. (1.9)

Moreover, it holds that ‖u‖H = ‖F‖H∗ . �

First, we observe that the left-hand side

(u ; v) :=

∫

Ω
∇u · ∇v dx

of the variational form (1.5) defines a scalar product on C1
D(Ω), provided the Dirichlet boundary

ΓD is nontrivial: Clearly, (u ; v) is a symmetric bilinear form on C1
D(Ω). It thus only remains to

prove definiteness. Note that 0 = (u ; u) = ‖∇u‖2L2(Ω) implies ∇u = 0, whence u is constant in Ω.

Together with u|ΓD
= 0, this proves u = 0. Moreover, the right-hand side

F (v) :=

∫

Ω
fv dx+

∫

ΓN

φv ds

defines a linear functional on C1
D(Ω) which is continuous with respect to the induced norm ‖v‖ :=

(v ; v)1/2. We prove this claim only in the special situation Γ = ΓD and postpone the abstract
proof to a subsequent section.

Lemma 1.3 (Friedrichs’ inequality). Suppose that Ω = [a, b]× [c, d] ⊂ R2 and ΓD = ∂Ω.
Then, it holds that ‖v‖L2(Ω) ≤ diam(Ω) ‖∇v‖L2(Ω) for all v ∈ C1

D(Ω).

Proof. For x = (x1, x2) ∈ Ω, it holds that v(x1, c) = 0. Therefore, the fundamental theorem of
calculus yields that

v(x) =

∫ x2

c
∂2v(x1, t) dt.

The Hölder inequality yields that

|v(x)| ≤ |d− c|1/2
(∫ x2

c
|∂2v(x1, t)|2 dt

)1/2
.
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Integration over Ω gives

‖v‖2L2(Ω) =

∫

Ω
|v(x)|2 dx ≤ |d− c|

∫

Ω

∫ x2

c
|∂2v(x1, t)|2 dt dx

= |d− c|
∫ d

c

∫ b

a

∫ x2

c
|∂2v(x1, t)|2 dt dx1 dx2

≤ |d− c|
∫ d

c
‖∂2v‖2L2(Ω) dx2

= |d− c|2‖∂2v‖2L2(Ω).

This results in ‖v‖L2(Ω) ≤ |d− c| ‖∂2v‖L2(Ω) ≤ diam(Ω) ‖∇v‖L2(Ω). �

According to the Hölder and the Friedrichs inequality, we obtain that

|F (v)| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ diam(Ω)‖f‖L2(Ω)‖∇v‖L2(Ω) = diam(Ω)‖f‖L2(Ω)‖v‖.

Therefore, the linear functional F is continuous with respect to ‖ · ‖ := ‖∇(·)‖L2(Ω) with operator

norm ‖F‖∗ ≤ diam(Ω)‖f‖L2(Ω). If C
1
D(Ω) associated with the norm ‖ · ‖ were a Hilbert space, the

Riesz theorem would therefore imply the unique solvability of the variational form (1.5). However,
C1
D(Ω) is not complete and therefore the Riesz theorem does not apply.

The remedy is to consider the (unique) completion of C1
D(Ω) with respect to ‖ · ‖. This leads to

a so-called Sobolev space H1
D(Ω), which is —by definition— complete and hence a Hilbert space.

Density arguments then lead to an extended variational form: Find u ∈ H1
D(Ω) such that

∫

Ω
∇u · ∇v dx =

∫

Ω
fv dx+

∫

ΓN

φv ds for all v ∈ H1
D(Ω), (1.10)

which is the weak form of the boundary value problem (1.1). Now, the Riesz theorem applies and
proves the unique existence of a weak solution u ∈ H1

D(Ω) of (1.10). Later on, we are going to
show that

• each strong solution u ∈ C2(Ω) of (1.1) belongs to H1
D(Ω) and is also the unique weak solution

of (1.10).

• provided the weak solution u ∈ H1
D(Ω) is smooth, i.e., u ∈ C2(Ω), the weak solution also

solves the strong form (1.1).

In this sense, the strong form (1.1) and the weak form (1.10) are equivalent.

1.3 Finite Element Method

The finite element method for (1.10) essentially consists of replacing the (infinite dimensional)
Sobolev space H1

D(Ω) by a finite dimensional subspace Xh ⊂ H1
D(Ω): Find uh ∈ Xh such that

∫

Ω
∇uh · ∇vh dx =

∫

Ω
fvh dx+

∫

ΓN

φvh ds for all vh ∈ Xh. (1.11)
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This problem is equivalent to the solution of a system of linear equations Ax = b, where the system
matrix A is symmetric and positive definite. Of course, the question of convergence depends on
the choice of Xh. Thus, there remain some topics for mathematical discussions later on.

The finite element method is a special Galerkin scheme. In this section, we collect the most
simple properties of Galerkin schemes. Throughout, H is a (real) Hilbert space, and 〈〈· ; ·〉〉 is an
equivalent scalar product on H, i.e., there are constants α, β > 0 such that

α‖v‖H ≤ |||v||| ≤ β‖v‖H for all v ∈ H, (1.12)

where |||v||| := 〈〈v ; v〉〉1/2 denotes the induced norm. We stress that 〈〈· ; ·〉〉 and ||| · ||| are often called
energy scalar product and energy norm, respectively (see also Exercise 5).

Remark. In the following, we state all results with respect to the norm ‖ · ‖H , which involves
the constants α, β > 0. Analogously, one may state the results with respect to the energy norm
||| · ||| = ‖ · ‖H , which corresponds to α = β = 1. ✷

For given F ∈ H∗, the Riesz theorem proves the existence and uniqueness of a solution u ∈ H
of

〈〈u ; v〉〉 = F (v) for all v ∈ H, (1.13)

for what we use the short-hand notation

〈〈u ; ·〉〉 = F ∈ H∗ (1.14)

to implicitly indicate that this equation holds (pointwise) for all v ∈ H. Now, the Galerkin method
simply consists in replacing the continuous space H by some finite dimensional subspace: Let Xh

be a finite-dimensional (and hence closed) subspace of H. Since the Riesz theorem applies to the
Hilbert space Xh as well, there is a unique Galerkin solution uh := Ghu ∈ Xh such that

〈〈Ghu ; ·〉〉 = F ∈ X∗h. (1.15)

For u ∈ H and the corresponding functional 〈〈u ; ·〉〉 ∈ H∗, this defines the Galerkin projection

Gh : H → Xh where Ghu ∈ Xh solves 〈〈Ghu ; ·〉〉 = 〈〈u ; ·〉〉 ∈ X∗h. (1.16)

Note that Ghu ∈ Xh is characterized by the Galerkin orthogonality

〈〈u −Ghu ; vh〉〉 = 0 for all vh ∈ Xh. (1.17)

Before we proceed with the theoretical analysis of Galerkin schemes, we treat an implementational
issue. The following theorem is the fundamental observation: Usually, only the scalar product
〈〈· ; ·〉〉 and the right-hand side F ∈ H∗ are known, while the exact solution u ∈ H of (1.13) is
unknown. Then, the Galerkin solution Ghu ∈ Xh can be computed by solving a linear system of
equations — without knowledge of u.

Theorem 1.4. Let {φ1, . . . , φN} be a basis of Xh. We define the Galerkin matrix A ∈ RN×N

and the vector b ∈ RN by

Ajk := 〈〈φk ; φj〉〉 and bj := F (φj). (1.18)
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Then, A is symmetric and positive definite and, in particular, a regular matrix. Moreover,
there holds Ghu =

∑N
j=1 xjφj , where the vector x ∈ RN solves Ax = b.

Proof. 1. step. Symmetry of A clearly follows from the symmetry of 〈〈· ; ·〉〉.
2. step. For any x ∈ RN and vh :=

∑N
j=1 xjφj , it holds that

|||vh|||2 = 〈〈vh ; vh〉〉 =
N∑

j,k=1

xjxk〈〈φj ; φk〉〉 = x ·Ax.

This proves Ax · x > 0 for all x 6= 0. By definition, A is positive definite and hence regular.

3. step. Determine Galerkin solution: Let x ∈ Rn be the unique solution of the linear Galerkin
system Ax = b. We use the basis representation Ghu =

∑N
j=1 yjφj of the Galerkin solution with

some coefficient vector y ∈ Rn. By use of the linearity of 〈〈· ; ·〉〉, equation (1.15) becomes

bk = F (φk) = 〈〈Ghu ; φk〉〉 =
N∑

j=1

yj〈〈φj ; φk〉〉 = (Ay)k for all k = 1, . . . , N.

Therefore, the coefficient vector y ∈ RN satisfies Ay = b. This proves x = y, i.e., we obtain Ghu
by solving Ax = b. �

Remark. We just remark that Theorem 1.4 can be applied for any orthogonal-type projection,
e.g., the L2-orthogonal projection onto a discrete space. ✷

We now proceed with the abstract analysis of Galerkin schemes. The following two lemmata
provide elementary properties of the Galerkin projection. The first lemma proves stability of the
method with respect to changes of the right-hand side F .

Lemma 1.5. The Galerkin projection Gh is a linear and continuous projection onto Xh with

‖Ghu‖H ≤ β

α
‖u‖H for all u ∈ H, (1.19)

where α, β > 0 are the norm equivalence constants from (1.12). Moreover, Gh is the orthogonal
projection onto Xh with respect to the energy scalar product 〈〈· ; ·〉〉.

Proof. For uh ∈ Xh, the Galerkin orthogonality (1.17) implies Ghuh = uh. Therefore Gh is a
projection onto Xh. Also the linearity of Gh follows from the Galerkin orthogonality (1.17). To see
the continuity of Gh, it remains to estimate the operator norm: For u ∈ H holds

|||Ghu|||2 = 〈〈Ghu ; Ghu〉〉 = 〈〈u ; Ghu〉〉 ≤ |||u||||||Ghu|||,

whence |||Ghu||| ≤ |||u||| and

α‖Ghu‖H ≤ |||Ghu||| ≤ |||u||| ≤ β‖u‖H ,

where we have used the norm equivalence (1.12) on H as well as the Cauchy inequality for the
scalar product 〈〈· ; ·〉〉. This proves that ‖Ghu‖H ≤ (α/β)‖u‖H and thus continuity of Gh. Finally,
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we remark that the unique orthogonal projection with respect to 〈〈· ; ·〉〉, is characterized by the
orthogonality relation (1.17). �

The following Céa lemma states that the Galerkin error ‖u − Ghu‖H is quasi-optimal, i.e.,
it behaves like the best approximation error up to multiplicative constants, which depend only on
the continuous setting but not on Xh.

Lemma 1.6 (Céa). The Galerkin error is quasi-optimal, i.e.,

‖u−Ghu‖H ≤ β

α
min

vh∈Xh

‖u− vh‖H for all u ∈ H, (1.20)

where α, β > 0 are the norm equivalence constants from (1.12). With respect to the energy
norm, it holds that

|||u−Ghu||| = min
vh∈Xh

|||u− vh||| for all u ∈ H, (1.21)

i.e., the Galerkin solution Ghu is the best approximation of u with respect to the energy norm.

Proof. For arbitrary vh ∈ Xh, the Galerkin orthogonality (1.17) proves that

|||u−Ghu|||2 = 〈〈u −Ghu ; u− vh〉〉 ≤ |||u−Ghu||||||u− vh|||,

which yields (1.21) with an infimum on the right-hand side. Of course, the minimum in (1.21) is
attained for vh = Ghu. With the same arguments as in the proof of the last lemma, we even see
that

α‖u −Ghu‖H ≤ |||u−Ghu||| ≤ |||u− vh||| ≤ β‖u− vh‖H ,

which implies (1.20) with an infimum on the right-hand side. This minimum is attained for vh =
Πhu with Πh : X → Xh being the orthogonal projection onto Xh with respect to ‖ · ‖H . �

Exercise 2. Let X be a normed vector space over R and Xh ⊆ X be a finite dimensional
subspace of X. Then, for any x ∈ X, there exists some (not necessarily unique) xh ∈ Xh such
that

‖x− xh‖X = min
vh∈Xh

‖x− vh‖X ,

i.e., best approximation errors on finite dimensional spaces as in (1.20) are always attained.
Prove that the set of minimizers is convex, closed and bounded (and hence even compact). ✷

A major advantage of Galerkin methods is that one can prove convergence for any exact solution
u ∈ H if one knows that smooth functions can be approximated well. In the following, think of the
subscript h > 0 as a mesh-size parameter with corresponding finite dimensional spaces Xh:
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Proposition 1.7. For all h > 0, let Xh be a finite-dimensional subspace of H. We assume
that there is a dense subspace D of H with approximation property, namely

lim
h→0

min
vh∈Xh

‖v − vh‖H = 0 for all v ∈ D. (1.22)

Then, for any u ∈ H, it holds that

lim
h→0

‖u−Ghu‖H = 0, (1.23)

i.e., the sequence of Galerkin solutions converges to the exact solution u.

Proof. For v ∈ D, the quasi-optimality (1.20) yields that

‖u−Ghu‖H ≤ β

α
min

vh∈Xh

‖u− vh‖H ≤ β

α

(
‖u− v‖H + min

vh∈Xh

‖v − vh‖H
)
.

We have to show that

∃C > 0∀ε > 0∃h0 > 0∀h ∈ (0, h0) ‖u−Ghu‖H ≤ C ε.

For ε > 0, let v ∈ D with ‖u − v‖H ≤ ε. Choose h0 > 0 according to the approximation
assumption (1.23) so that minvh∈Xh

‖v − vh‖H ≤ ε for all h ∈ (0, h0). We thus finally obtain
‖u−Ghu‖H ≤ 2βε/α, which concludes the proof. �

Although the result of the preceding lemma seems to be very attractive, we stress, however,
that the convergence of a Galerkin scheme can be arbitrarily slow. We argue in the abstract setting:
If H is a separable Hilbert space, e.g., H is a Sobolev space, there is a countable orthonormal basis{
φj

∣∣ j ∈ N
}
. Any u ∈ H can be written as u =

∑∞
j=1 xjφj with coefficients (xn) ∈ ℓ2. If we define

Xj := span{φ1, . . . , φj}, it holds that

min
vh∈Xh

‖u− vh‖2H =

∞∑

j=k+1

x2j .

Finally, the decay of the right-hand side can be very slow. One may think of, e.g., x2j = j−(1+ε) for
any ε > 0, so that the series converges but is — in the beginning — almost the divergent harmonic
series.

The following exercise shows that the approximation property (1.22) in particular implies that
the Hilbert space H has to be separable.

Exercise 3. Suppose that X is a normed space with finite dimensional subspaces Xℓ ⊆
Xℓ+1 ⊆ X for all ℓ ∈ N. Suppose that D ⊆ X is a dense subspace such that, for all x ∈ X,

lim
ℓ→∞

min
xℓ∈Xℓ

‖x− xℓ‖X = 0. (1.24)

Then, X is separable, i.e., there is a countable and dense subset M ⊆ X. ✷
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Exercise 4. Let X = ℓ∞ and Xℓ :=
{
(xn) ∈ ℓ∞

∣∣ xj = 0 for all j ≥ ℓ
}
. Prove that (1.24)

fails to hold for any dense subspace D. Note that this also follows if one proves that ℓ∞ is not
separable. ✷

Remark. All foregoing results of this section hold (in a slightly modified form) in case that 〈〈· ; ·〉〉
only is a continuous and elliptic bilinear form on the Hilbert space H, i.e., in all proofs, one can
avoid to use the symmetry of 〈〈· ; ·〉〉. ✷

The following exercise explains why ||| · ||| is called energy norm. In many situations, the function
J(·) has the interpretation of a physical energy.

Exercise 5. Let 〈〈· ; ·〉〉 be a scalar product on the Hilbert space H such that the norm ||| · |||
is equivalent to ‖ · ‖H . Let F ∈ H∗ and u ∈ H. Then, the following assertions are equivalent:

• 〈〈u ; ·〉〉 = F ∈ H∗;

• J(u) = min
v∈H

J(v), where J(v) := 1
2 〈〈v ; v〉〉 − F (v).

In particular, the variational formulation is equivalent to energy minimization, and this result
also covers the discrete setting. Derive a formula for the energy error J(Ghu) − J(u), where
Gh : H → Xh denotes the Galerkin projection. ✷

Finally, we comment on an extension of the concept of Galerkin schemes to some nonlinear
problems. We note that this framework does, in particular, cover the frame of the Lax–Milgram
lemma.

Exercise 6 (Main Theorem on Strongly Monotone Operators (Zarantonello ’60)).
Let H be a Hilbert space and A : H → H∗ be a Lipschitz continuous and strongly monotone
operator, i.e.,

‖Au−Av‖H∗ ≤ L‖u− v‖H and 〈Au−Av ; u− v〉H∗×H ≥M‖u− v‖2H for all u, v ∈ H

with constants L,M > 0 that only depend on A. Then, A is bijective. Hint: Injectivity of
A follows from the monotonicity of A. To prove surjectivity, we apply a fixed point argument:
Let IH : H → H∗, IH(u) := (u ; ·)H denote the Riesz mapping. For given F ∈ H∗ and a certain
choice of C > 0, the mapping Φ(u) := u − CI−1H (Au − F ) is a contraction on H. Therefore,
the Banach contraction theorem applies and provides a unique u ∈ H with u = Φ(u). ✷

Exercise 7 (Lemma of Lax–Milgram). Use Exercise 6 to derive the Lemma of Lax–
Milgram: Let H be a Hilbert space and a(·, ·) be a continuous and elliptic bilinear form on H,
i.e.,

a(u, v) ≤ L ‖u‖H‖v‖H and a(u, u) ≥M ‖u‖2H for all u, v ∈ H,

where the constants L,M > 0 depend only on a(·, ·). Then, given a right-hand side F ∈ H∗,
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there is a unique u ∈ H with a(u, ·) = F ∈ H∗. ✷

Exercise 8. Define the Galerkin method in the context of monotone operators: Under the
assumptions of Exercise 6, we aim to approximate the solution u ∈ H of Au = F ∈ H∗.
How does the Galerkin method look like in this setting? Prove that the Galerkin operator
Gh : H → Xh onto a finite dimensional subspace Xh ⊂ H is a well-defined (in general non-
linear) and Lipschitz-continuous projection, i.e., G2

h = Gh with

‖Ghu−Gvv‖H ≤ C ‖u− v‖H for all u, v ∈ H.

Céa lemma

‖u−Ghu‖H ≤ C min
vh∈Xh

‖u− vh‖H for all u ∈ H.

Show that the constants C > 0 depend only on A. ✷

Exercise 9. We stick with the setting of monotone operators from Exercise 7 and 8: How can
one compute the Galerkin approximation uh = Ghu ∈ Xh of a solution u ∈ H of Au = F ∈ H∗?
For N = dimXh, provide a (nonlinear) system of equations in RN which characterizes the
unique solution uh = Ghu ∈ Xh. What happens if the operator A is linear? ✷
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Chapter 2

Sobolev Spaces and Poisson Problem

2.1 Sobolev Spaces on Domains

This section briefly recalls the definition of Sobolev spaces Hm(Ω), for integer order m ∈ N0, on
domains Ω ⊆ Rd. While this section requires Ω only to be open and connected, the following
sections will implicitly assume that Ω is a bounded Lipschitz domain.

Definition. A function u ∈ L1
ℓoc(Ω) :=

{
w : Ω → R measurable

∣∣∀K ⊂ Ω compact w ∈ L1(K)
}

has a weak partial derivative ∂ju ∈ L1
ℓoc(Ω), if the pair (u, ∂ju) satisfies the integration by parts

formula with smooth test functions that vanish on the boundary, i.e., it holds that

∫

Ω
u(∂jv) dx = −

∫

Ω
(∂ju)v dx for all v ∈ D(Ω) := C∞c (Ω). (2.1)

Note that ∂ju is (so far) only a symbol, whereas ∂jv := ∂v/∂xj is the classical j-th derivative of
v ∈ D(Ω). We say that u ∈ L1

ℓoc(Ω) is weakly differentiable with weak gradient ∇u ∈ L1
ℓoc(Ω),

if all weak derivatives ∂ju, for j = 1, . . . , d, exist. ✷

From the main theorem of calculus, we infer that the weak derivative is unique, if it exists.
Moreover, the weak derivative and the classical derivative coincide, if the classical derivative exists.

Theorem 2.1 (Fundamental Theorem of Calculus of Variations). Let f ∈ L1
ℓoc(Ω)

satisfy
∫
Ω fv dx = 0 for all v ∈ D(Ω). Then, it holds that f = 0 almost everywhere in Ω. �

Remark. Note that C(Ω) ⊂ L1
ℓoc(Ω). For f ∈ C(Ω), the fundamental theorem of calculus of

variations can be proven by elementary calculus: Note that for any x ∈ Rd and any radius ε > 0,
there is a function ψ ∈ D(Rd) such that

{
y ∈ Rd

∣∣ψ(y) > 0
}
= U(x, ε) :=

{
y ∈ Rd

∣∣ |x − y| < ε
}
;

see the following Exercise 10. Provided f ∈ C(Ω) with f(x) 6= 0 for some x ∈ Ω, we may assume
f(x) > 0. By continuity, there is a small radius ε > 0 such that U(x, ε) ⊂ Ω and that f(y) > 0
for all y ∈ U(x, ε). With the associated function ψ ∈ D(Ω), we thus see that

∫
Ω fψ dx > 0. Note

that this argument provides the (logically equivalent) contraposition of the fundamental theorem
of calculus of variations in the case of a continuous function f . ✷

11
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Exercise 10. (i) Show that the following definition provides φ ∈ C∞(R) with supp(φ) =
[−1, 1]:

φ(t) :=

{
exp

(
− 1/(1 − t2)

)
, for |t| < 1,

0 else.

(ii) For ε > 0 and x ∈ Rd, define the function ψx,ε(y) := φ(|x−y|2/ε). Show that ψx,ε ∈ C∞(Rd)
with supp(ψx,ε) =

{
y ∈ Rd

∣∣ |x− y| ≤ ε
}
and ψx,ε(y) > 0 for all y ∈

{
y ∈ Rd

∣∣ |x− y| < ε
}
. ✷

Corollary 2.2. (i) The weak derivative ∂ju is unique, if it exists: If ∂ju, ∂̃ju ∈ L1
ℓoc(Ω)

satisfy (2.1), it holds that ∂ju = ∂̃ju almost everywhere in Ω.
(ii) A function u ∈ C1(Ω) is weakly differentiable, and the weak derivative coincides with the
classical derivative.

Proof. (i) It holds that
∫
Ω(∂ju − ∂̃ju)v dx = 0 for all v ∈ D(Ω) and thus ∂ju − ∂̃ju = 0 almost

everywhere in Ω. (ii) follows from (i) and the integration by parts formula. �

A deeper result is the following, which is somehow, nevertheless, quite natural and expected.

Theorem 2.3. If u ∈ L1
ℓoc(Ω) is weakly differentiable with ∇u = 0, then the function u is

constant, i.e., there is a constant c ∈ R such that u = c almost everywhere in Ω. �

Definition. For m = 0, we define H0(Ω) := L2(Ω) as the classical Lebesgue space of square
integrable functions. For m = 1, the Sobolev space H1(Ω) is defined by

H1(Ω) :=
{
u ∈ L2(Ω)

∣∣ u weakly differentiable, ∇u ∈ L2(Ω)
}

(2.2)

and associated with the graph norm

‖u‖H1(Ω) :=
(
‖u‖2L2(Ω) + ‖∇u‖2L2(Ω)

)1/2
. (2.3)

Higher-order Sobolev spaces of integer order m ∈ N may be defined inductively by

Hm(Ω) :=
{
u ∈ L2(Ω)

∣∣ u weakly differentiable, ∇u ∈ Hm−1(Ω)
}
, (2.4)

with associated norm

‖u‖Hm(Ω) :=
(
‖u‖2L2(Ω) + ‖∇u‖2Hm−1(Ω)

)1/2
. (2.5)

Remark. Clearly, C1(Ω) ⊆ H1(Ω) and we note below that C1(Ω) is even dense in H1(Ω). ✷

Theorem 2.4. For all m ∈ N0, the Sobolev space Hm(Ω) is a Hilbert space.

12
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Proof. The proof uses the (hopefully) well-known fact that H0(Ω) = L2(Ω) is a Hilbert space. We
shall proceed by induction on m. However, we explicitely consider the case m = 1 first: Obviously,
the H1-norm is induced by the scalar product

(u ; v)H1(Ω) := (u ; v)L2(Ω) + (∇u ; ∇v)L2(Ω) for all u, v ∈ H1(Ω),

i.e., ‖u‖2H1(Ω) = (u ; u)H1(Ω). Therefore, it only remains to prove the completeness of H1(Ω). Let

(un) be a Cauchy sequence in H1(Ω). Note that, by definition of the H1-norm, (un) as well as
(∇un) are Cauchy sequences in L2(Ω). Since L2(Ω) is complete, there are unique u ∈ L2(Ω) and
g ∈ L2(Ω)d such that

lim
n→∞

‖u− un‖L2(Ω) = 0 = lim
n→∞

‖g −∇un‖L2(Ω).

By definition of H1(Ω), it thus only remains to prove that u is weakly differentiable with gradient
∇u = g. Let v ∈ D(Ω) be an arbitrary test function. From the weak differentiability of each un
and L2-convergence, we obtain that

(u ; ∂jv)L2(Ω) = lim
n→∞

(un ; ∂jv)L2(Ω) = − lim
n→∞

(∂jun ; v)L2(Ω) = −(gj ; v)L2(Ω).

Therefore, gj is the j-th weak derivative of u and consequently g = ∇u. This concludes the case
m = 1. The induction step for Hm(Ω) is left to the reader, but obviously follows from the same
arguments, where we replace g ∈ L2(Ω)d by g ∈ Hm−1(Ω)d. �

2.2 Main Theorems on Sobolev Spaces

From now on, it will be important and thus assumed that Ω ⊂ Rd is a bounded Lipschitz domain.
By definition of the Sobolev spaces Hm(Ω), there holds Hm(Ω) ⊂ Hm−1(Ω) with ‖u‖Hm−1(Ω) ≤
‖u‖Hm(Ω). In other words, the identity operator id : Hm(Ω) → Hm−1(Ω) is well-defined and
continuous. The following Rellich theorem states that it is also compact. This is a pretty strong
result. The impact of which will become clear in our proofs of the Poincaré inequality and the
Friedrichs inequality.

Theorem 2.5 (Rellich Compactness Theorem). For any integer order m ∈ N, the
embedding Hm(Ω) ⊆ Hm−1(Ω) is compact. �

We recall that an operator A ∈ L(X;Y ) between normed spaces X and Y is compact, if and
only if each bounded set S ⊆ X is mapped to a pre-compact set A(S) ⊆ Y , i.e., A(S) ⊆ Y is
compact.

Lemma 2.6. Suppose that A ∈ L(X;Y ) is a compact operator between a Banach space X
and a normed space Y and that (xn) is a weakly convergent sequence, i.e., xn ⇀ x ∈ X. Then,
the image (Axn) is strongly convergent to Ax in Y , i.e., Axn → Ax ∈ Y .

Proof. Using the adjoint operator A∗ ∈ L(Y ∗;X∗), one sees that Axn ⇀ Ax ∈ Y . As-
sume that (Axn) does not strongly converge to Ax. Then, there is a subsequence (Axnk

) with

13
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infk∈N ‖Axnk
− Ax‖Y ≥ ε for some ε > 0. Recall that weakly convergent sequence are always

bounded. Compactness thus provides a further subsequence (Axnkℓ
) of (Axnk

) with Axnkℓ
→ y ∈ Y .

In particular, Axnkℓ
⇀ y ∈ Y and therefore y = Ax. This contradicts the choice of the subsequence

(Axnk
). �

Exercise 11. Let X be a reflexive Banach space and Y be a normed space. Suppose that
A ∈ L(X,Y ) is completely continuous, i.e., for all (xn) in X, weak convergence xn ⇀ x in
X implies strong convergence Axn → Ax in Y . Prove that A is compact, i.e., for X being
reflexive, the operator A is compact if and only if it is completely continuous. ✷

Before the statement and the proof of the Poincaré inequality, we need a further technical
lemma. The result is rather standard in the analysis of variational problems.

Lemma 2.7. A continuous and convex functional f : X → R on a normed space X is weakly
lower semicontinuous, i.e., for each weakly convergent sequence (xn) in X with xn ⇀ x ∈ X,
it holds that

f(x) ≤ lim inf
n∈N

f(xn). (2.6)

Proof. 1. step. We prove that the epigraph G :=
{
(x, α) ∈ X × R

∣∣ f(x) ≤ α
}
is convex: For

(x, α), (y, β) ∈ G and 0 ≤ θ ≤ 1, the convexity of f proves that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) ≤ θα+ (1− θ)β,

whence θ(x, α) + (1− θ)(y, β) ∈ G, i.e., G ⊆ X × R is convex.

2. step. We use the continuity of f to prove that G is also closed: Let (xn, αn) be a convergent
sequence in G, i.e., it holds that xn → x ∈ X and αn → α ∈ R. We prove that (x, α) ∈ G, which
follows from

f(x) = lim
n→∞

f(xn) ≤ lim
n→∞

αn = α.

3. step. The following step in the proof is known as Mazur’s lemma: We prove that the closed
and convex set G is also weakly closed in X×R =: Y , i.e., closed with respect to the weak topology
on Y . We argue by contradiction and assume that G is not weakly closed. Then, there is an element
y ∈ G

σ\G, where Gσ
denotes the weak closure of G. According to the Hahn-Banach separation

theorem, there is a functional φ ∈ Y ∗ and a scalar λ ∈ R such that φ(y) < λ ≤ inf φ(G). Therefore
U := φ−1(−∞, λ) is weakly open with y ∈ U and U ∩G = ∅. This contradicts topologically that y
is in the weak closure of G. Hence, G = G

σ
is weakly closed, and we may proceed with the proof

of (2.6).

4. step. We show the weak lower semicontinuity of f : Suppose that xn ⇀ x ∈ X. For
α := lim infn f(xn) = ∞, (2.6) is trivial. We thus may assume α < ∞. Let β > α and define
αn := max{β, f(xn)} → β. Clearly, (xn, αn) ∈ G. Moreover, this sequence is weakly convergent
(xn, αn) ⇀ (x, β). We deduce (x, β) ∈ G. Thus, f(x) ≤ β for all β > α and therefore finally
f(x) ≤ α = lim

n→∞
f(xn). �

A first consequence of the preceding abstract results is that one can easily construct equivalent
norms on the Sobolev space H1(Ω).

14
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Proposition 2.8. Let | · |H1 be a continuous seminorm on H1(Ω) which is definite on the
constant functions, i.e., |c|H1 = 0 implies c = 0 for all c ∈ R. Then, there are constants
C1, C2 > 0 such that

|v|H1 ≤ C1 ‖v‖H1(Ω) as well as C−12 ‖v‖L2(Ω) ≤ |||v||| := ‖∇v‖L2(Ω) + |v|H1 for all v ∈ H1(Ω).

In particular, ||| · ||| defines an equivalent norm on H1(Ω), i.e.,

(1 + C1)
−1 |||v||| ≤ ‖v‖H1(Ω) ≤ (1 + C2) |||v||| for all v ∈ H1(Ω).

Proof. 1. step. Existence of C1: By definition of continuity, there exists an open neighborhood
O ⊆ H1(Ω) of 0 such that |v|H1 ≤ 1 for all v ∈ O. Without loss of generality, we may choose a
radius r > 0 sufficiently small such that Br(0) ⊂ O ⊂ H1(Ω) for the closed ball with radius r and
center zero. This implies

|v|H1 =
1

r
‖v‖H1(Ω)|r

v

‖v‖H1(Ω)
|H1 ≤ 1

r
‖v‖H1(Ω).

This proves existence of C1 := 1/r.

2. step. Existence of C2: We assume that there is no constant C2 > 0 such that ‖v‖L2(Ω) ≤
C2 |||v||| for all v ∈ H1(Ω). Therefore, there exists a sequence (vn) in H

1(Ω) such that

1

n
‖vn‖L2(Ω) > |||vn||| = ‖∇vn‖L2(Ω) + |vn|H1

The definition of wn := vn/‖vn‖L2(Ω) leads to to a sequence (wn) in H
1(Ω) such that

‖wn‖L2(Ω) = 1, ‖∇wn‖L2(Ω) ≤ 1/n, |wn|H1 ≤ 1/n.

Therefore, (wn) is a bounded sequence in the Hilbert space H1(Ω). A Hilbert space is reflexive.
By virtue of the Banach-Alaoglou theorem, each bounded sequence thus has a weakly convergent
subsequence. Therefore, we may assume that wn ⇀ w ∈ H1(Ω). An application of Lemma 2.7
proves that

‖∇w‖L2(Ω) ≤ lim inf
n→∞

‖∇wn‖L2(Ω) = 0,

whence the weak limit w is constant. Another application of Lemma 2.7 proves that

|w|H1 ≤ lim inf
n→∞

|wn|H1 = 0

since a seminorm is always convex. Therefore, w = 0. On the other hand, the Rellich theorem
states the strong convergence wn → w ∈ L2(Ω) and thus ‖w‖L2(Ω) = lim

n→∞
‖wn‖L2(Ω) = 1. This

contradiction concludes the existence of C2. In particular, we hence observe ‖v‖H1(Ω) ≤ ‖v‖L2(Ω)+
‖∇v‖L2(Ω) ≤ (C2 + 1) |||v|||. �
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Corollary 2.9 (Poincaré Inequality). It holds that

‖v‖L2(Ω) ≤ C̃P

(
‖∇v‖L2(Ω) +

∣∣
∫

Ω
v dx

∣∣
)

for all v ∈ H1(Ω), (2.7)

where the constant C̃P > 0 depends only on Ω. Moreover, |||v||| := ‖∇v‖L2(Ω)+
∣∣ ∫

Ω v dx
∣∣ defines

even an equivalent norm on H1(Ω).

Proof. According to Proposition 2.8, it only remains to show that

|v|H1 :=
∣∣∣
∫

Ω
v dx

∣∣∣ for v ∈ H1(Ω)

defines a continuous seminorm on H1(Ω) which is definite on the constant functions. The equality
|c|H1 = |Ω||c| for c ∈ R verifies the definiteness. Lipschitz continuity follows from

∣∣|v|H1 − |w|H1

∣∣ ≤
∣∣∣
∫

Ω
v − w dx

∣∣∣ ≤ |Ω|1/2‖v − w‖L2(Ω) ≤ |Ω|1/2‖v −w‖H1(Ω)

and from the boundedness of Ω. �

Corollary 2.10 (Poincaré Inequality). There is a constant CP > 0, which depends only
on the shape of Ω but not on its diameter, such that

‖v‖L2(Ω) ≤ CP diam(Ω) ‖∇v‖L2(Ω) for all v ∈ H1
∗ (Ω) :=

{
w ∈ H1(Ω)

∣∣ ∫
Ω w dx = 0

}
, (2.8)

where diam(Ω) := sup
{
|x− y|

∣∣ x, y ∈ Ω
}
denotes the diameter of Ω.

Proof. The proof is a so-called scaling argument: We define λ := diam(Ω) and Ω̃ := λ−1Ω.
Note that the scaled domain Ω̃ satisfies diam(Ω̃) = 1 and depends only on the shape of Ω. We
consider the affine bijection Φ : Ω → Ω̃, Φ(x) := λ−1x. Recall the transformation theorem, which
holds for arbitrary diffeomorphisms Φ : Ω → Ω̃ and states that

∫

Ω̃
f̃ dy =

∫

Ω
f̃(Φ(x)) |detDΦ(x)| dx for all f̃ ∈ L1(Ω̃).

Note that detDΦ(x) = λ−d since DΦ = λ−1III in our case. For v ∈ H1(Ω), we define ṽ := v ◦Φ−1 ∈
H1(Ω̃). Then,

‖ṽ‖2
L2(Ω̃)

=

∫

Ω̃
|ṽ|2 dy = λ−d

∫

Ω
|v|2 dx = λ−d‖v‖2L2(Ω).

According to the chain rule, it holds that ∇ṽ = λ (∇v) ◦ Φ−1 and consequently that

‖∇ṽ‖2
L2(Ω̃)

= λ2−d‖∇v‖2L2(Ω).

With C̃P > 0 the Poincaré constant from (2.7) for Ω̃, we thus infer

‖v‖2L2(Ω) = λd ‖ṽ‖2
L2(Ω̃)

≤ λd C̃ 2
P ‖∇ṽ‖2

L2(Ω̃)
= λ2 C̃ 2

P ‖∇v‖2L2(Ω).
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Note that C̃P depends only on Ω̃ und thus only on the shape of Ω. This concludes the proof. �

Remark. We stress that Iv :=
∫
Ω v dx defines a linear and continuous functional on H1(Ω). In

particular, H1
∗ (Ω) = ker(I) is a closed subspace of H1(Ω) and hence a Hilbert space. According

to the Poincaré inequality, it holds that ‖∇v‖L2(Ω) ≤ ‖v‖H1(Ω) ≤ (1 + C̃2
P )

1/2‖∇v‖L2(Ω) for all
v ∈ H1

∗ (Ω). In particular, ‖∇v‖L2(Ω) defines an equivalent Hilbert norm on H1
∗ (Ω) with associated

scalar product (∇u ; ∇v)L2(Ω). ✷

Theorem 2.11 (Meyers-Serrin). For each integer order m ∈ N, C∞(Ω) and, in particular,
C∞(Ω) ∩Hm(Ω) are dense subspaces of Hm(Ω). �

Theorem 2.12 (Trace Operator). There is a unique operator γ ∈ L
(
H1(Ω);L2(Γ)

)
such

that γv = v|Γ for all v ∈ C1(Ω), i.e., γ extends the classical trace defined as restriction v|Γ on
the boundary for smooth functions v. �

As a first corollary to Theorem 2.12, we can prove that the integration by parts formula also
holds for Sobolev functions u, v ∈ H1(Ω).

Corollary 2.13 (Integration by Parts). For all u, v ∈ H1(Ω), it holds that

∫

Ω
u
∂v

∂xj
dx+

∫

Ω

∂u

∂xj
v dx =

∫

Γ
γu γv nj ds. (2.9)

Proof. The formula (2.9) holds for u, v ∈ C1(Ω). All three terms define continuous bilinear forms
on H1(Ω)×H1(Ω). Therefore (2.9) follows, for arbitrary u, v ∈ H1(Ω) from the density of C1(Ω)
in H1(Ω): Given u, v ∈ H1(Ω), there are sequences (un) and (vn) in C1(Ω) which converge to
u resp. v in H1(Ω). Therefore, if a(·, ·) : H1(Ω) × H1(Ω) → R is continuous, then it holds that
lim
n→∞

a(un, vn) = a(u, v). This concludes the proof. �

The analytical treatment of the Dirichlet problem makes use of the so-called Friedrichs inequal-
ity, whereas the analytical treatment of the Neumann problem uses the previously proven Poincaré
inequality.

Corollary 2.14 (Friedrichs Inequality). Assume that the Dirichlet boundary ΓD ⊆ Γ
has positive surface measure |ΓD| > 0. Then, it holds that

‖v‖L2(Ω) ≤ C̃F

(
‖∇v‖L2(Ω) + ‖γv‖L2(ΓD)

)
for all v ∈ H1(Ω) (2.10)

with a constant C̃F > 0, which depends only on Ω and ΓD. Moreover, the right-hand side
|||v||| := ‖∇v‖L2(Ω) + ‖γv‖L2(ΓD) even defines an equivalent norm on H1(Ω).

Proof. We again apply Proposition 2.8. It only remains to show that

|v|H1 := ‖γv‖L2(ΓD) for v ∈ H1(Ω)
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defines a continuous seminorm on H1(Ω) which is definite on the constant functions. The defi-
niteness is again easily obtained from |c|H1 = |ΓD|1/2|c| for c ∈ R. Lipschitz continuity follows
from

∣∣|v|H1 − |w|H1

∣∣ ≤ ‖γv − γw‖L2(ΓD) = ‖γ(v − w)‖L2(ΓD) ≤ C ‖v − w‖H1(Ω)

according to the continuity of the trace operator γ ∈ L(H1(Ω);L2(Γ)). �

Definition. We define H1
0 (Ω) := D(Ω)

‖·‖H1
and H1

D(Ω) := C1
D(Ω)

‖·‖H1

, where the subscript D
indicates the Dirichlet boundary ΓD. By definition, H1

0 (Ω) as well as H
1
D(Ω) are closed subspaces

of H1(Ω) and thus Hilbert spaces. In particular, it holds that H1
0 (Ω) ⊆ H1

D(Ω). ✷

The same scaling argument as for the Poincaré inequality proves the following variant of the
Friedrichs inequality, where we note that continuity of the trace operator γ proves that γv = 0, for
v ∈ H1

0 (Ω), as well as (γv)|ΓD
= 0, for v ∈ H1

D(Ω).

Corollary 2.15 (Friedrichs Inequality). It holds that

‖v‖L2(Ω) ≤ CF diam(Ω) ‖∇v‖L2(Ω) for all v ∈ H1
D(Ω) (2.11)

with a constant CF > 0 that depends only on the shape of Ω and ΓD. �

We finally note the relation between H1
D(Γ) and the trace operator, cf. the Theorem of Meyers-

Serrin.

Theorem 2.16. There holds H1
0 (Ω) = ker(γ) with γ ∈ L(H1(Ω);L2(Γ)) the trace operator.

Moreover, H1
D(Ω) =

{
v ∈ H1(Ω)

∣∣ (γv)|ΓD
= 0

}
. �

Exercise 12. Usually, one defines the range of the trace operator as H1/2(Γ) := range(γ) ⊆
L2(Γ). This space is associated with the norm ‖v‖H1/2(Γ) := inf

{
‖v̂‖H1(Ω)

∣∣ v̂ ∈ H1(Ω) with γv̂ =

v
}
. Prove that H1/2(Γ) associated with this norm is a Hilbert space with continuous inclusion

H1/2(Γ) ⊆ L2(Γ). Hint: Recall the definition and the standard results on quotient spaces
and the associated quotient norm! ✷

For X = H1(Ω) and Y = L2(Ω), the following exercise shows that the L2-scalar products
(f ; ·)L2(Ω) for f ∈ L2(Ω) give (up to density) all linear and continuous functionals on H1(Ω), i.e.,
the embedding L2(Ω) → H1(Ω)∗, f 7→ (f ; ·)L2(Ω) is well-defined, linear, continuous, and injective
with dense image.

Exercise 13. Let X and Y be Hilbert spaces with continuous embedding X ⊆ Y . Show
that the mapping I : Y ∗ → X∗, Iy∗ := y∗|X is well-defined, linear, and continuous. Prove that
I(Y ∗) ⊆ X∗ is a dense subspace. Moreover, if X ⊆ Y is dense with respect to ‖ · ‖Y , then the
embedding I is even injective. ✷
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2.3 Weak Form of Laplace Problem

2.3.1 Dirichlet Problem

In this section, we generalize the variational form derived in the introductory section to our Hilbert
space setting. We start with the homogeneous Dirichlet problem

−∆u = f in Ω,

u = 0 on Γ.
(2.12)

Recall that this formulation is called the strong form of the boundary value problem. The following
proposition provides the — in some sense — equivalent and always uniquely solvable weak form of
the boundary value problem.

Proposition 2.17. (i) Provided that u ∈ C2(Ω) solves (2.12) for a given source term
f ∈ C(Ω), it holds that u ∈ H1

0 (Ω) as well as

(∇u ; ∇v)L2(Ω) = (f ; v)L2(Ω) for all v ∈ H1
0 (Ω). (2.13)

(ii) Given f ∈ L2(Ω), the weak form (2.13) has a unique solution u ∈ H1
0 (Ω). It holds that

‖u‖H1(Ω) ≤ C sup
v∈H1

0 (Ω)\{0}

(f ; v)L2(Ω)

‖v‖H1(Ω)
≤ C ‖f‖L2(Ω), (2.14)

where the constant C > 0 depends only on Ω.

(iii) Provided that f ∈ C(Ω) and that the weak solution u ∈ H1
0 (Ω) of (2.13) additionally

satisfies u ∈ C2(Ω), then u even solves the strong form (2.12).

Proof. (i) We have already seen before that a strong solution u ∈ C2(Ω) solves the variational
form (2.13) for test functions v ∈ C1

0 (Ω) :=
{
w ∈ C1(Ω)

∣∣w|Γ = 0
}
replacing H1

0 (Ω); see Propo-
sition 1.1. If we keep u fixed, the left-hand side as well as the right-hand side of (2.13) define
continuous and linear functionals on H1(Ω). Note that the closure of C1

0 (Ω) with respect to the
H1-norm leads to the Hilbert space H1

0 (Ω). Therefore, standard density arguments prove (2.13).
(ii) According to the Friedrichs inequality, it holds that

‖∇v‖2L2(Ω) ≤ ‖v‖2H1(Ω) ≤ (1 + C̃2
F ) ‖∇v‖2L2(Ω) for all v ∈ H1

0 (Ω).

Therefore, the left-hand side of (2.13) defines an equivalent scalar product on H1
0 (Ω). The Riesz

theorem thus provides a unique weak solution u ∈ H1
0 (Ω) of (2.13). Plugging-in u = v ∈ H1

0 (Ω),
the weak form yields that

(1 + C̃2
F )
−1‖u‖2H1(Ω) ≤ ‖∇u‖2L2(Ω) = (f ; u)L2(Ω) ≤ sup

v∈H1
0 (Ω)\{0}

(f ; v)L2(Ω)

‖v‖H1(Ω)
‖u‖H1(Ω)

which results in the first estimate of (2.14). The second estimate follows from the Cauchy inequality

(f ; v)L2(Ω) ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H1(Ω).
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(iii) Since the weak solution u is smooth, we may use integration by parts to see that

(∇u ; ∇v)L2(Ω) = (−∆u ; v)L2(Ω) for all v ∈ H1
0 (Ω).

The difference with the weak form (2.13) thus yields that

0 = (f +∆u ; v)L2(Ω) for all v ∈ H1
0 (Ω).

Note that F := f + ∆u ∈ C(Ω). With D(Ω) ⊆ H1
0 (Ω), Theorem 2.1 proves F = 0; see also

the remark right after Theorem 2.1. Consequently, it holds that −∆u = f in Ω. The Dirichlet
boundary conditions (in the strong form) follow from 0 = γu = u|Γ. Altogether, u solves (2.12) �

2.3.2 Mixed Boundary Value Problem

Second, we consider the mixed boundary value problem

−∆u = f in Ω,

u = 0 on ΓD,

∂u/∂n = φ on ΓN ,

(2.15)

with Γ = ΓD∪ΓN , ΓD∩ΓN = ∅, and |ΓD| > 0. The limit case |ΓD| = 0 corresponds to the Neumann
problem which is treated in Section 2.3.3. Recall the trace norm ‖·‖H1/2(Γ) from Exercise 12. Then,
the main proposition reads as follows:

Proposition 2.18. (i) Suppose that ΓN is smooth, i.e., the outer normal vector depends
continuously on x ∈ ΓN . Provided that u ∈ C2(Ω) solves the strong form (2.15) for a given
source term f ∈ C(Ω) and Neumann data φ ∈ C(ΓN ), it holds that u ∈ H1

D(Ω) as well as

(∇u ; ∇v)L2(Ω) = (f ; v)L2(Ω) + (φ ; γv)L2(ΓN ) for all v ∈ H1
D(Ω). (2.16)

(ii) Given f ∈ L2(Ω) and φ ∈ L2(ΓN ), the weak form (2.16) has a unique solution u ∈ H1
D(Ω).

It holds that

‖u‖H1(Ω) ≤ C1

(
sup

v∈H1
D(Ω)\{0}

(f ; v)L2(Ω)

‖v‖H1(Ω)
+ sup

w∈H1/2(Γ)\{0}

(φ ; w)L2(ΓN )

‖w‖H1/2(Γ)

)

≤ C2

(
‖f‖L2(Ω) + ‖φ‖L2(ΓN )

)
(2.17)

where the constants C1, C2 > 0 depend only on Ω and ΓD.

(iii) Provided that f ∈ C(Ω) and φ ∈ C(ΓN ) and that the weak solution u ∈ H1
D(Ω) of (2.16)

additionally satisfies u ∈ C2(Ω), then u even solves the strong form (2.15).

Proof is done in the exercises. �
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2.3.3 Neumann Problem

Finally, we consider the Neumann problem

−∆u = f in Ω,

∂u/∂n = φ on Γ.
(2.18)

Note that the solution u of (2.18) cannot be unique: If u ∈ C2(Ω) solves the strong form (2.18),
also u + c solves (2.18), for all c ∈ R. To fix the additive constant, we seek a solution which
additionally satisfies, e.g., that

∫

Ω
u dx = 0. (2.19)

Moreover, the Gauss divergence theorem shows

−
∫

Ω
f dx =

∫

Ω
∆u dx =

∫

Ω
div(∇u) dx =

∫

Γ

∂u

∂n
ds =

∫

Γ
φds.

Therefore, the data f and φ have to satisfy the compatibility condition
∫

Ω
f dx+

∫

Γ
φds = 0 (2.20)

to allow for the existence of (strong) solutions. Recall the trace norm ‖ · ‖H1/2(Γ) from Exercise 12.

Proposition 2.19. (i) Suppose that Γ is smooth, i.e., the outer normal vector depends
continuously on x ∈ Γ. Provided that u ∈ C2(Ω) solves (2.18) for a given source term f ∈ C(Ω)
and Neumann data φ ∈ C(Γ), it holds that u ∈ H1(Ω) and

(∇u ; ∇v)L2(Ω) = (f ; v)L2(Ω) + (φ ; γv)L2(Γ) for all v ∈ H1(Ω). (2.21)

(ii) Given f ∈ L2(Ω) and φ ∈ L2(Γ), the variational formulation

(∇u ; ∇v)L2(Ω) = (f ; v)L2(Ω) + (φ ; γv)L2(Γ) for all v ∈ H1
∗ (Ω) (2.22)

has a unique solution u ∈ H1
∗ (Ω) :=

{
v ∈ H1(Ω)

∣∣ ∫
Ω v dx = 0

}
.

(iii) Provided that the data f ∈ L2(Ω) and φ ∈ L2(Γ) satisfy (2.20), the unique solution
u ∈ H1

∗ (Ω) of (2.22) even solves the weak form (2.21). Moreover, it holds that

‖u‖H1(Ω) ≤ C1

(
sup

v∈H1(Ω)\{0}

(f ; v)L2(Ω)

‖v‖H1(Ω)
+ sup

w∈H1/2(Γ)\{0}

(φ ; w)L2(Γ)

‖w‖H1/2(Γ)

)

≤ C2

(
‖f‖L2(Ω) + ‖φ‖L2(Γ)

) (2.23)

where the constants C1, C2 > 0 depend only on Ω.

(iv) Provided that f ∈ C(Ω) and φ ∈ C(Γ) satisfy (2.20) and that the weak solution u ∈
H1
∗ (Ω) of (2.21) resp. (2.22) additionally satisfies u ∈ C2(Ω), then u even solves the strong

form (2.18).
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Proof. (i) The variational form (2.21) holds for test functions v ∈ C1(Ω) according to integration
by parts. For fixed u, the left-hand as well as the right-hand side define continuous linear functionals
on H1(Ω). Thus, (2.21) follows for v ∈ H1(Ω) by density arguments. (ii) According to the
Poincaré inequality, it holds that

‖∇v‖2L2(Ω) ≤ ‖v‖2H1(Ω) ≤ (1 + C̃2
P )‖∇v‖2L2(Ω) for all v ∈ H1

∗ (Ω).

Therefore, the left-hand side of (2.22) defines an equivalent scalar product on H1
∗ (Ω). Note that

H1
∗ (Ω) is a closed subspace of H1(Ω) and hence a Hilbert space. Therefore, (2.22) follows from the

Riesz theorem. (iii) For a function v ∈ H1(Ω), we define ṽ := v − vΩ ∈ H1
∗ (Ω), where vΩ ∈ R

denotes the integral mean vΩ := (1/|Ω|)
∫
Ω v dx ∈ R. Note that (2.20) implies that

(f ; vΩ)L2(Ω) + (φ ; vΩ)L2(Γ) = 0.

Thus, (2.22) proves that

(∇u ; ∇v)L2(Ω) = (∇u ; ∇ṽ)L2(Ω) = (f ; ṽ)L2(Ω) + (φ ; γṽ)L2(Γ) = (f ; v)L2(Ω) + (φ ; γv)L2(Γ),

i.e., u even solves (2.21). Plugging-in u = v, we see that

‖∇u‖2L2(Ω) ≤ sup
v∈H1(Ω)\{0}

(f ; v)L2(Ω)

‖v‖H1(Ω)
‖u‖H1(Ω) + sup

w∈H1/2(Γ)\{0}

(φ ; w)L2(Γ)

‖w‖H1/2(Γ)

‖γu‖H1/2(Γ),

where we have used that H1/2(Γ) = range(γ). Note that the H1/2-norm is defined in such a way
that γ ∈ L(H1(Ω);H1/2(Γ)) with ‖γu‖H1/2(Γ) ≤ ‖u‖H1(Ω). Therefore,

‖∇u‖2L2(Ω) ≤ ‖u‖H1(Ω)

(
sup

v∈H1(Ω)\{0}

(f ; v)L2(Ω)

‖v‖H1(Ω)
+ sup

w∈H1/2(Γ)\{0}

(φ ; w)L2(Γ)

‖w‖H1/2(Γ)

)
.

Together with (1+ C̃2
P )
−1‖u‖2H1(Ω) ≤ ‖∇u‖2L2(Ω), this proves the first estimate in (2.23). As above,

the first supremum may be estimated by ‖f‖L2(Ω). With the continuous embedding H1/2(Γ) ⊂
L2(Γ), the numerator of the second supremum can be dominated by

(φ ; w)L2(Γ) ≤ ‖φ‖L2(Γ)‖w‖L2(Γ) ≤ C̃ ‖φ‖L2(Γ)‖w‖H1/2(Γ).

This provides the upper bound C̃ ‖φ‖L2(Γ) for the second supremum. (iv) As above, we may
use integration by parts to see that

(f +∆u ; v)L2(Ω) + (φ− ∂u/∂n ; γv)L2(Γ) = 0 for all v ∈ H1(Ω).

From this, we first conclude f = −∆u by use of Theorem 2.1 for test functions v ∈ D(Ω) ⊂ H1
0 (Ω) ⊂

H1(Ω). To prove φ = ∂u/∂n, one proceeds analogously to the remark right after Theorem 2.1. �
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Chapter 3

A Priori Analysis

xT yT

zT

̺T

hT

Figure 3.1. The diameter hT of the triangle T is the length of the longest edge (possibly non
unique). The quantity ̺T denotes the corresponding height.

3.1 P1-Finite Element Method in 2D

A set T ⊂ R2 is called a non-degenerate triangle provided that there are nodes xT , yT , zT ∈ R2

with T = conv{xT , yT , zT } and provided that |T | > 0, i.e., T has positive measure. We note that
T is in particular bounded and closed, whence compact. We denote by

KT := {xT , yT , zT } (3.1)

the set of nodes of T and by

ET :=
{
conv{xT , yT }, conv{yT , zT }, conv{zT , xT }

}
(3.2)

the set of edges of T . The diameter of T is denoted by

hT := diam(T ) := max
{
|x− y|

∣∣ x, y ∈ T
}
. (3.3)
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Moreover, we define the edge length

hE := diam(E) := max
{
|x− y|

∣∣ x, y ∈ E
}

(3.4)

for all edges E ∈ ET . Clearly, the diameter hT of a triangle is the length of the longest edge
(possibly non unique), i.e., there is some E ∈ ET with hT = hE . The height over the longest edge
E of T is denoted by ̺T , cf. Figure 3.1. Recall that the measure of the triangle reads

|T | = hT ρT
2

. (3.5)

The most important example is the reference triangle

Tref := conv{(0, 0), (1, 0), (0, 1)} (3.6)

which has measure |Tref | = 1/2.

Exercise 14. Give a formal proof that the diameter of a triangle T is the length of one
longest edge, i.e., hT = maxE∈ET hE . Hint: Use that the convex hull conv(M) :=

⋂{
M̂ ⊆

Rd
∣∣ M̂ is convex with M ⊆ M̂

}
of a setM ⊆ Rd is also characterized by conv(M) =

{∑N
j=1 λjxj∣∣N ∈ N, xj ∈ M,λj ≥ 0 with

∑N
j=1 λj = 1

}
. The proof then directly applies to general sim-

plices in Rd, i.e., T = conv{x0, . . . , xd} ⊂ Rd. ✷

T

T ′

T

T ′

T

T ′

Figure 3.2. For a regular triangulation T , the intersection of two elements T 6= T ′ is either
empty, a joint node, or a joint edge.

Definition. A set T is a triangulation of Ω (consisting of triangles) if and only if

• T is a finite set of non-degenerate triangles,

• the closure of Ω is covered by T , i.e., Ω =
⋃T ,

• for all T, T ′ ∈ T with T 6= T ′, it holds that |T ∩ T ′| = 0, i.e., the overlap is a set of measure
zero.

By K :=
⋃{

x ∈ KT

∣∣T ∈ T
}
, we then denote the set of nodes of the triangulation T and by

E :=
⋃{

E ∈ ET
∣∣T ∈ T

}
the set of edges of the triangulation T . A triangulation of Ω is called

conforming or regular (in the sense of Ciarlet) provided that the intersection of two elements
T, T ′ ∈ T with T 6= T ′ is

24



CHAPTER 3. A PRIORI ANALYSIS

• either empty,

• or a joint node, i.e., T ∩ T ′ = {z} = KT ∩ KT ′ ,

• or a joint edge, i.e., E := T ∩ T ′ ∈ ET ∩ ET ′ ,

cf. Figure 3.2. According to this regularity assumption, an edge E ∈ E with surface measure
|E ∩ Γ| > 0 automatically satisfies E ⊆ Γ, i.e., an edge E is either a boundary edge or an interior
edge. Additionally, we always assume that a regular triangulation resolves the boundary conditions:
If Γ = ∂Ω is partitioned into Dirichlet and Neumann boundary ΓD and ΓN , respectively, each
boundary edge E ∈ E with E ⊆ Γ satisfies

• either E ⊆ ΓD

• or E ⊆ ΓN .

With this assumption, we define the (disjoint) sets of boundary edges

ED :=
{
E ∈ E

∣∣E ⊆ ΓD

}
and EN :=

{
E ∈ E

∣∣E ⊆ ΓN

}
(3.7)

as well as the set of all interior edges

EΩ := E\(ED ∪ EN ). (3.8)

We finally note that, for each E ∈ EΩ, there are two elements T, T ′ ∈ T with E = T ∩ T ′.

Exercise 15. Let T be a regular triangulation of Ω and v : Ω → R such that v|T ∈ C1(T ) for
all T ∈ T . Prove that v ∈ H1(Ω) if and only if v ∈ C(Ω). ✷

The following proposition essentially follows from the regularity of the triangulation T .

Proposition 3.1. For a regular triangulation T of Ω, we define the discrete space

S1(T ) :=
{
vh ∈ C(Ω)

∣∣ ∀T ∈ T vh|T affine
}

(3.9)

of all T -piecewise affine and globally continuous functions. Then, there holds the following:
(i) S1(T ) is an N -dimensional subspace of H1(Ω) with N = #K the number of nodes.
(ii) For each node z ∈ K, there is a unique hat function

ζz ∈ S1(T ) with ζz(z
′) = δzz′ for all z′ ∈ K. (3.10)

(iii) The set B :=
{
ζz

∣∣ z ∈ K
}
is a basis of S1(T ), the so-called nodal basis.

Proof. 1. step. According to the regularity of T , hat functions ζz are automatically continuous
on Ω: For each element T ∈ T , an affine function vh : T → R is uniquely determined by the nodal
values vh(z) for z ∈ KT . Therefore, the T -piecewise affine hat function ζz defined by ζz(z

′) = δzz′

is uniquely defined. We now show that ζz ∈ C(Ω): If T, T ′ ∈ T are elements with T ∩ T ′ 6= ∅,
regularity of T implies that either T = T ′ or {z′} = T ∩ T ′ is a joint point or E = T ∩ T ′ is a joint
edge. In the latter case, note that the trace on E of the affine function ζz|T as well as of ζz|T ′ is
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Figure 3.3. Examples of P1 hat functions ζz: The left figures show the mesh as well as the
support supp(ζz) in grey, where the corresponding node z ∈ K is indicated in red. The right
figures show the plots of the hat functions. Triangles T ∈ T with ζz |T = 0 are filled with white.

uniquely defined on the edge E by the nodal values ζz(xE) and ζz(yE), where E = conv{xE , yE}.
Therefore the traces of ζz|T and ζz|T ′ on E coincide, i.e., ζz is continuous on each interior edge.

2. step. The nodal basis B is a basis of S1(T ) and dimS1(T ) = #K: Clearly, the hat functions
are linearly independent, B ⊆ S1(T ), and #B = #K. Moreover, each function vh ∈ S1(T )
is uniquely defined by the nodal values vh(z) for z ∈ K and can thus be written as the linear
combination of the hat functions, i.e., S1(T ) ⊆ span(B).

3. step. The inclusion S1(T ) ⊂ H1(Ω) follows from Exercise 15. �

Remark. Examples for hat functions ζz are shown in Figure 3.3. Note that the support supp(ζz)
is always local. This leads to a sparse Galerkin matrix A, i.e., most of the entries of A are zero. ✷

For a given Dirichlet boundary ΓD ⊆ Γ, we use the discrete space S1
D(T ) to discretize the weak

form of the mixed boundary value problem. In case of ΓD = Γ, we consider the space S1
0 (T ).
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Corollary 3.2. Let T be a regular triangulation of Ω. Then, the space

S1
D(T ) :=

{
vh ∈ S1(T )

∣∣ ∀z ∈ K ∩ ΓD vh(z) = 0
}

(3.11)

is a finite dimensional subspace of H1
D(Ω) of dimension #

{
z ∈ K

∣∣ z 6∈ ΓD

}
. The space

S1
0 (T ) :=

{
vh ∈ S1(T )

∣∣ ∀z ∈ K ∩ Γ vh(z) = 0
}

(3.12)

is a finite dimensional subspace of H1
0 (Ω) of dimension #

{
z ∈ K

∣∣ z 6∈ Γ
}
.

Proof. We only need to show that vh|ΓD
= 0 for vh ∈ S1

D(T ). Let x ∈ ΓD. According to
the regularity of T , there is an edge E ∈ ED such that x ∈ E. Since the trace vh|E is affine,
it is uniquely determined by the nodal values vh(xT ) = 0 = vh(yT ), where E = conv{xT , yT }.
Consequently, vh|E = 0 for all E ∈ ED and hence vh ∈ H1

D(Ω). In particular, we obtain the claim
for S1

0 (T ) in case of ΓD = Γ. �

For the discretization of the Neumann problem, we are dealing with S1
∗ (T ).

Corollary 3.3. For a regular triangulation T of Ω, the space

S1
∗ (T ) :=

{
vh ∈ S1(T )

∣∣ ∫
Ω vh dx = 0

}
(3.13)

is a finite dimensional subspace of H1
∗ (Ω) of dimension #K− 1.

Proof. Clearly, it holds that S1
∗ (T ) ⊆ H1

∗ (Ω). Note that I(vh) :=
∫
Ω vh dx is a linear functional

on S1(T ) with kernel S1
∗ (T ) = ker(I). Since rank(I) = 1, Linear Algebra yields that dimS1

∗ (T ) =
dimS1(T )− 1. �

The P1 Finite Element Method now consists of using the Galerkin method with the discrete
spaces S1

0 (T ), S1
D(T ), and S1

∗ (T ) to approximate the weak solution of the Dirichlet problem, the
mixed boundary value problem, and the Neumann problem, respectively. From now on, we shall
assume that T is a regular triangulation of Ω. We start with the Dirichlet problem

−∆u = f in Ω,

u = 0 on Γ,

for given data f ∈ L2(Ω). The P1-FEM then reads: Find uh ∈ S1
0 (T ) such that

(∇uh ; ∇vh)L2(Ω) = (f ; vh)L2(Ω) for all vh ∈ S1
0 (T ). (3.14)

Second, the mixed boundary value problem reads

−∆u = f in Ω,

u = 0 on ΓD,

∂u/∂n = φ on ΓN ,

with Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, and |ΓD| > 0. The data satisfy f ∈ L2(Ω) and φ ∈ L2(ΓN ). The
P1-FEM for the mixed BVP reads: Find uh ∈ S1

D(T ) such that

(∇uh ; ∇vh)L2(Ω) = (f ; vh)L2(Ω) + (φ ; vh)L2(ΓN ) for all vh ∈ S1
D(T ). (3.15)
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Finally, we consider the Neumann problem

−∆u = f in Ω,

∂u/∂n = φ on Γ,

where the data f ∈ L2(Ω) and φ ∈ L2(Γ) are assumed to satisfy
∫
Ω f dx+

∫
Γ φds = 0. The P1-FEM

for the Neumann problem reads: Find uh ∈ S1
∗ (T ) such that

(∇uh ; ∇vh)L2(Ω) = (f ; vh)L2(Ω) + (φ ; vh)L2(Γ) for all vh ∈ S1
∗ (T ). (3.16)

T

T1 T2

T3

T4

Figure 3.4. Red-refinement refines the element T ∈ T (old) into 4 similar elements T1, . . . , T4 ∈
T (new). The new nodes K(new)\K(old) are just the edge midpoints for all edges E ∈ E(old). In
particular, regularity of T (old) implies regularity of T (new).

3.2 Approximation Theorem and Bramble-Hilbert Lemma

3.2.1 Uniform Mesh-Refinement and Shape Regularity

Let h ∈ L∞(Ω) and ̺ ∈ L∞(Ω) denote the local mesh-width functions which are defined by

h|T := hT = diam(T ) and ̺|T := ̺T for all T ∈ T . (3.17)

Moreover, the quantities

σ(T ) :=
hT
̺T

and σ(T ) := ‖h/̺‖L∞(Ω) = max
T∈T

hT
̺T

≥ 1 (3.18)

denote the shape regularity constant of an element T ∈ T resp. the triangulation T . Note
that |T | = hT ̺T /2 so that 2hT /̺T = h2T /|T |. The shape regularity constant will affect all error
estimates, so that mesh-refinement has to avoid a blow-up of σ(T ). We say that a regular mesh T
is γ-shape regular, if σ(T ) ≤ γ <∞.

For this section, we stick with the so-called uniform mesh-refinement: Given a regular
triangulation T (old), we obtain a new triangulation T (new) as follows: Each element T ∈ T (old) is
split into 4 similar triangles T1, . . . , T4 ∈ T (new), cf. Figure 3.4. Therefore, each node z ∈ K(new)

either belongs to K(old) or is the midpoint of an edge E ∈ E(old). We stress some simple observations:
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• The new triangulation T (new) is also regular.

• The local mesh-width functions satisfy h(new) = h(old)/2 and ̺(new) = ̺(old)/2.

• In particular, the shape regularity constant satisfies that σ(T (old)) = σ(T (new)).

Further mesh-refinement strategies are discussed in the following section.

Exercise 16. Let T = conv{z1, z2, z3} be a non-degenerate triangle in R2. Prove that the
shape regularity constant hT /̺T tends to infinity if and only if the smallest angle in T tends
to zero. ✷

Exercise 17. Often, the shape regularity constant is defined as the maximal quotient hT /rT ,
where rT > 0 denotes the maximal radius of a ball B(x, rT ) :=

{
y ∈ R2

∣∣ |x−y| ≤ rT
}
inscribed

in T , i.e., B(x, rT ) ⊆ T . Let T = conv{z1, z2, z3} be a non-degenerate triangle in R2. What is
the relation between ̺T and rT ? ✷

3.2.2 Statement and Interpretation of Approximation Theorem

To state our first main result in this section, we need to know that certain Sobolev functions are
at least continuous.

Theorem 3.4 (Sobolev). Let Ω be a Lipschitz domain in Rd and m > d/2. Then, there
holds the continuous inclusion Hm(Ω) ⊆ C(Ω). �

In particular, for d = 2, 3, each Sobolev function u ∈ H2(Ω) is continuous so that evaluation
of u at the nodes z ∈ K is well-defined. Throughout the remaining section, we assume that T is a
regular triangulation of a bounded Lipschitz domain Ω ⊂ R2. We stress, however, that the same
results — even with the same proofs — hold for d = 3 as well. As in the previous section, the nodal
basis function corresponding to a node z ∈ K is denoted by ζz ∈ S1(T ).

Theorem 3.5 (Approximation Theorem). For u ∈ H2(Ω), the nodal interpolant reads

Ihu :=
∑

z∈K

u(z)ζz ∈ S1(T ). (3.19)

For all T ∈ T , there hold the elementwise error estimates

‖u− Ihu‖L2(T ) ≤ C ‖h2D2u‖L2(T ) (3.20)

and

‖∇(u− Ihu)‖L2(T ) ≤ C σ(T ) ‖hD2u‖L2(T ), (3.21)

where the generic constant C > 0 is independent of u, T , and Ω, but depends only on the
reference triangle. In particular, this proves for all α ∈ R the global error estimates

‖hα(u− Ihu)‖L2(Ω) ≤ C ‖h2+αD2u‖L2(Ω) (3.22)
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and

‖hα∇(u− Ihu)‖L2(Ω) ≤ C σ(T ) ‖h1+αD2u‖L2(Ω). (3.23)

Before the proof of Theorem 3.5, we discuss the following immediate consequence:

Corollary 3.6. For u ∈ H2(Ω) ∩H1
D(Ω), it holds that Ihu ∈ S1

D(T ) and thus

min
vh∈S

1
D(T )

‖u− vh‖H1(Ω) ≤ ‖u− Ihu‖H1(Ω) ≤ C σ(T ) ‖hD2u‖L2(Ω). (3.24)

For u ∈ H2(Ω) ∩H1
∗ (Ω), it holds that

min
vh∈S1∗(T )

‖u− vh‖H1(Ω) = min
vh∈S1(T )

‖u− vh‖H1(Ω) ≤ ‖u− Ihu‖H1(Ω)

≤ C σ(T ) ‖hD2u‖L2(Ω).
(3.25)

In either case, the constant C > 0 depends only on diam(Ω).

Proof. Let Capx > 0 denote the constant from the approximation theorem. Then,

‖u− Ihu‖2H1(Ω) = ‖u− Ihu‖2L2(Ω) + ‖∇(u− Ihu)‖2L2(Ω) ≤ C2
apx(diam(Ω)2 + σ(T )2)‖hD2u‖2L2(Ω).

Since σ(T ) ≥ 1, we obtain that

‖u− Ihu‖H1(Ω) ≤ Capxσ(T )(diam(Ω)2 + 1)1/2 ‖hD2u‖L2(Ω).

For u ∈ H2(Ω) ∩ H1
D(Ω), it holds that u(z) = 0 for all z ∈ ΓD. This implies that Ihu ∈ S1

D(T )
and hence (3.24). Before we prove (3.25), note that Ihu ∈ S1(T ) does not belong to S1

∗ (T ) in
general. However, let Ph : H1(Ω) → S1(T ) denote the H1-orthogonal projection onto S1(T ). Since
1 ∈ S1(T ), it holds that

0 =

∫

Ω
u dx = (u ; 1)H1(Ω) = (Phu ; 1)H1(Ω) =

∫

Ω
Phu dx for all u ∈ H1

∗ (Ω).

Therefore, Phu ∈ S1
∗ (T ), and the best approximation property of the orthogonal projection Ph thus

implies that

‖u− Phu‖H1(Ω) = min
vh∈S1(T )

‖u− vh‖H1(Ω) ≤ min
vh∈S1∗(T )

‖u− vh‖H1(Ω) ≤ ‖u− Phu‖H1(Ω)

and hence equality. As before, this proves (3.25). �

Remark. Corollary 3.6 has two important consequences: First, according to Céa’s lemma, the
Galerkin error is up to a constant the best approximation error. For a smooth exact solution
u ∈ H2(Ω), the P1-FEM thus leads (at least and in fact even) to a convergence order O(h).
Second, C∞D (Ω) is dense in H1

D(Ω) and C∞∗ (Ω) :=
{
v ∈ C∞(Ω)

∣∣ ∫
Ω v dx = 0

}
is dense in H1

∗ (Ω).
Corollary 3.6 therefore implies convergence of the Galerkin scheme on a dense subspace. The
abstract framework provides convergence of the P1-FEM even without any regularity assumptions
on u, cf. Proposition 1.7. ✷
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Exercise 18. Use the Poincaré inequality and the Meyers-Serrin theorem to prove that C∞∗ (Ω)
is dense in H1

∗ (Ω). ✷

3.2.3 Bramble-Hilbert Lemma

It now remains to prove the Approximation Theorem 3.5. The proof of which needs three lemmata.
The first two lemmata provide the basis for general scaling arguments. We therefore state the
results even in a slightly generalized setting.

Definition. For a multiindex α ∈ Nd
0 and x ∈ Rd, we define the monomial xα :=

∏d
j=1 x

αj

j , where

|α| := ∑d
j=1 αj is the (total) degree of α. For a Lipschitz domain T ⊆ Rd, we define

Pm(T ) :=
{
v : T → R

∣∣ v is linear combination of monomials of degree ≤ m
}

(3.26)

the space that consists of all polynomials of degree less than or equal to m ∈ N.

Lemma 3.7 (Bramble-Hilbert). For a Lipschitz domain T ⊂ Rd and a normed space X,
let A ∈ L(Hm+1(T );X) be a linear and continuous operator with Pm(T ) ⊆ ker(A). Besides
the classical continuity estimate

‖Av‖X ≤ ‖A‖‖v‖Hm+1(T ) for all v ∈ Hm+1(T ), (3.27)

it holds that

‖Av‖X ≤ C ‖A‖‖Dm+1v‖L2(T ) for all v ∈ Hm+1(T ), (3.28)

where the constant C > 0 depends only on m and T .

Proof. 1. step. Construct an equivalent norm on Hm+1(T ): Note that Pm(T ) is a finite di-
mensional space. Let Π : L2(T ) → Pm(T ) denote the L2-orthogonal projection onto Pm(T ). We
define

|||v||| := ‖Dm+1v‖L2(T ) + ‖Πv‖L2(T ) for v ∈ Hm+1(T ).

From ‖Πv‖L2(T ) ≤ ‖v‖L2(T ), we infer that

|||v||| ≤ ‖Dm+1v‖L2(T ) + ‖v‖L2(T ) ≤
√
2 ‖v‖Hm+1(T ).

Next, we prove the converse inequality, i.e., there exists a constant C > 0 such that

‖v‖Hm+1(T ) ≤ C |||v||| for all v ∈ Hm+1(T ).

As above, we use the Rellich theorem and argue by contradiction: If the claim is wrong, we find
vn ∈ Hm+1(T ) such that ‖vn‖Hm+1(T ) > n|||vn|||. We define wn := vn/‖vn‖Hm+1(T ). Note that

‖wn‖Hm+1(T ) = 1 as well as |||wn||| ≤
1

n
.
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According to reflexivity, we may thus assume that wn ⇀ w ∈ Hm+1(T ). According to Lemma 2.7,
convexity and continuity of ||| · ||| imply that |||w||| = 0. Therefore, it holds that Dm+1w = 0 as
well as Πw = 0. With the help of Exercise 19, we deduce that w ∈ Pm(T ) and consequently
‖w‖L2(T ) = ‖Πw‖L2(T ) = 0. According to Rellich’s theorem, we have wn → w = 0 ∈ Hm(T ). Since
Dm+1wn → 0 ∈ L2(T ), we even conclude that wn → 0 = w ∈ Hm+1(T ). This however, contradicts
‖wn‖Hm+1(T ) = 1. Altogether, we have shown that ||| · ||| is an equivalent norm on Hm+1(T ).

2. step. With the norm equivalence constant C > 0 of step 1, it holds that

‖Av‖X = ‖A(v −Πv)‖X ≤ ‖A‖‖v −Πv‖Hm+1(T ) ≤ C ‖A‖|||v −Πv||| = C ‖A‖‖Dm+1v‖L2(T )

for all v ∈ Hm+1(T ). �

Exercise 19. Prove that a function v ∈ Hm+1(T ) on a bounded Lipschitz domain T ⊂ Rd

satisfies Dm+1v = 0 if and only if v ∈ Pm(T ). Hint: You should use the case m = 0 without
a proof, cf. Theorem 2.3. ✷

3.2.4 Scaling Argument and Proof of Approximation Theorem

Lemma 3.8 (Transformation Formula). Let T, T̂ ⊂ Rd be Lipschitz domains. Let
Φ(x) := Bx+ y with regular matrix B ∈ Rd×d and vector y ∈ Rd be an affine diffeomorphism
with Φ(T̂ ) = T . For u ∈ Hm(T ), it holds that u ◦ Φ ∈ Hm(T̂ ) with

‖Dm(u ◦ Φ)‖
L2(T̂ )

≤ |detB|−1/2‖B‖mF ‖Dmu‖L2(T ), (3.29)

where ‖B‖F denotes the Frobenius norm of B. Moreover, for m = 0, there even holds equality.

Proof. 1. step. The case m = 0: According to the transformation theorem and DΦ(x) = B, it
holds that

‖u‖2L2(T ) =

∫

T
u2 dy =

∫

T̂
(u ◦ Φ)2 |detDΦ| dx = |detB| ‖u ◦ Φ‖2

L2(T̂ )
.

2. step. To treat the higher-order case for smooth functions u ∈ C∞(T ), we first prove by induction
on m that for all jℓ ∈ {1, . . . , d}, it holds that

∂j1 · · · ∂jm(u ◦ Φ)(x) =
d∑

k1=1

· · ·
d∑

km=1

∂k1 · · · ∂kmu(Φ(x))
m∏

ℓ=1

Bkℓjℓ , (3.30)

which is the special case of the Faà di Bruno formula (chain rule for partial derivatives): The case
m = 1 follows from the chain rule D(u ◦ Φ)(x) = Du(Φ(x))DΦ(x) = Du(Φ(x))B, where, e.g.,
Du(y) = (∂1u, . . . , ∂du)(y). Therefore,

∂j(u ◦ Φ)(x) =
d∑

k=1

∂ku(Φ(x))Bkj .
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Assuming that (3.30) holds up to m ∈ N, we now prove the equality for m+ 1:

∂j1 · · · ∂jm+1(u ◦ Φ)(x) !
= ∂j1

( d∑

k2=1

· · ·
d∑

km+1=1

∂k2 · · · ∂km+1u(Φ(x))

m+1∏

ℓ=2

Bkℓjℓ

)

=

d∑

k2=1

· · ·
d∑

km+1=1

∂j1
(
∂k2 · · · ∂km+1u(Φ(x))

)m+1∏

ℓ=2

Bkℓjℓ

!
=

d∑

k2=1

· · ·
d∑

km+1=1

d∑

k1=1

∂k1∂k2 · · · ∂km+1u(Φ(x))Bk1j1

m+1∏

ℓ=2

Bkℓjℓ

=
d∑

k1=1

· · ·
d∑

km+1=1

∂k1∂k2 · · · ∂km+1u(Φ(x))
m+1∏

ℓ=1

Bkℓjℓ ,

where we have used the induction hypothesis for m and the initial step m = 1. This verifies (3.30).

3. step. We apply the Cauchy inequality to (3.30) to see that

∣∣∂j1 · · · ∂jm(u ◦Φ)(x)
∣∣2 ≤

( d∑

k1=1

· · ·
d∑

km=1

∣∣∂k1 · · · ∂kmu(Φ(x))
∣∣2
)( d∑

k1=1

· · ·
d∑

km=1

∣∣∣
m∏

ℓ=1

Bkℓjℓ

∣∣∣
2
)

=

( d∑

k1=1

· · ·
d∑

km=1

∣∣∂k1 · · · ∂kmu(Φ(x))
∣∣2
)( d∑

k1=1

· · ·
d∑

km=1

m∏

ℓ=1

B2
kℓjℓ

)

!
=

( d∑

k1=1

· · ·
d∑

km=1

∣∣∂k1 · · · ∂kmu(Φ(x))
∣∣2
)( m∏

ℓ=1

d∑

kℓ=1

B2
kℓjℓ

)
,

where the last equality follows from another simple induction argument.

4. step. We prove the transformation formula (3.29) for u ∈ C∞(T ):

|detB|‖Dm(u ◦ Φ)‖2
L2(T̂ )

=

∫

T̂

d∑

j1=1

· · ·
d∑

jm=1

|∂j1 · · · ∂jm(u ◦ Φ)(x)|2|detDΦ(x)| dx

≤
( d∑

j1=1

· · ·
d∑

jm=1

m∏

ℓ=1

d∑

kℓ=1

B2
kℓjℓ

)

︸ ︷︷ ︸
=
∏m

ℓ=1

∑d
jℓ=1

∑d
kℓ=1 B

2
kℓjℓ

(∫

T̂

d∑

k1=1

· · ·
d∑

km=1

∣∣∂k1 · · · ∂kmu(Φ(x))
∣∣2|detDΦ(x)| dx

)

︸ ︷︷ ︸
=‖Dmu‖2

L2(T )

= ‖B‖2mF ‖Dmu‖2L2(T ).

5. step. We prove the transformation formula (3.29) for general u ∈ Hm(T ): According to
the Meyers-Serrin theorem, C∞(T ) is a dense subspace of Hm(T ). Note that (3.29) implies for
u ∈ C∞(T ) the estimate ‖u ◦ Φ‖

Hm(T̂ )
≤ C ‖u‖Hm(T ), where C > 0 depends only on m and B.

Hence, Ψu := u ◦ Φ extends uniquely to a linear and continuous mapping Ψ : Hm(T ) → Hm(T̂ ).
For u ∈ Hm(T ), choose (un) ⊂ C∞(T ) with un → u ∈ Hm(T ). By continuity of Ψ, it holds that
un◦Φ = Ψun → Ψu in Hm(T̂ ). Moreover, according to step 1, it holds that un◦Φ → u◦Φ ∈ L2(T̂ ).
This implies that u ◦ Φ = Ψu ∈ Hm(T̂ ), i.e., the (unique) extension of Ψ from C∞(T ) to Hm(T )

33



CHAPTER 3. A PRIORI ANALYSIS

is, in fact, the composition. Moreover, the left-hand side and the right-hand side of (3.29) depend
continuously (with respect to Hm(T )) on u. This and (3.29) for un ∈ C∞(T ) prove that

‖Dm(u ◦ Φ)‖L2(T̂ ) = lim
n→∞

‖Dm(un ◦ Φ)‖L2(T̂ ) ≤ lim
n→∞

|detB|−1/2‖B‖mF ‖Dmun‖L2(T )

= |detB|−1/2‖B‖mF ‖Dmu‖L2(T )

and conclude the proof. �

Lemma 3.9. For T̂ = Tref the reference element and T = conv{z1, z2, z3} ⊂ R2 being a
non-degenerate triangle, we define

ΦT : Tref → T, ΦT (s, t) := z1 +B

(
s
t

)
, where B :=

(
z2 − z1 z3 − z1

)
∈ R2×2. (3.31)

Then, it holds that |detB| = 2 |T | and

hT /
√
2 ≤ ‖B‖F ≤

√
2hT as well as ̺−1T /

√
2 ≤ ‖B−1‖F ≤

√
2 ̺−1T . (3.32)

Proof. It holds that

‖B‖2F = |z2 − z1|2 + |z3 − z1|2 ≤ 2h2T .

Moreover,

|z3 − z2| ≤ |z3 − z1|+ |z2 − z1| ≤
√
2
(
|z3 − z1|2 + |z2 − z1|2

)1/2 ≤
√
2 ‖B‖F .

In particular, hT = max{|z2 − z1|, |z3 − z1|, |z3 − z2|} ≤
√
2 ‖B‖F . The transformation theorem

gives

1

2
|detB| = |Tref | |detB| =

∫

Tref

|detDΦT | dx =

∫

T
dx = |T | > 0.

Hence, 0 < |detB| = 2 |T | = hT̺T . In particular, B−1 as well as ̺−1T are well-defined. It holds
that

B−1 =
1

detB

(
b22 −b12
−b21 b11

)
for B =

(
b11 b12
b21 b22

)
.

In particular, this proves that

‖B−1‖F =
‖B‖F
|detB| =

‖B‖F
hT̺T

,

and the second estimate in (3.32) follows from the first. �

Proof of Approximation Theorem 3.5. 1. step. Estimate on the reference element Tref : Let
Irefh : H2(Tref) → P1(Tref) denote the nodal interpolation operator on the reference element. We
consider the operator

A := 1− Irefh : H2(Tref) → Hk(Tref) for k = 0, 1
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and observe that P1(Tref) ⊆ ker(A). To see that A is continuous, we estimate

‖Av‖Hk(Tref )
≤ ‖v‖H2(Tref ) + ‖Irefh v‖Hk(Tref )

.

Let z1, z2, z3 denote the nodes of the reference element. Since all norms on the finite dimensional
space P1(Tref) are equivalent, we use the Sobolev inequality to see that

‖Irefh v‖Hk(Tref )
≤ Cnorm max

j=1,...,3
|Irefh v(zj)| ≤ Cnorm‖v‖∞,Tref

≤ CnormCsobolev‖v‖H2(Tref ).

Altogether, we obtain that ‖Av‖Hk(Tref )
≤ (1 + CnormCsobolev)‖v‖H2(Tref ), whence continuity of the

operator A. Consequently, the Bramble-Hilbert lemma provides a constant Cref > 0 that depends
only on Tref with

‖v − Irefh v‖Hk(Tref )
≤ Cref‖D2v‖L2(Tref ) for all v ∈ H2(Tref) and k = 0, 1.

2. step. Scaling arguments provide the estimate on each element T : Let Φ = ΦT denote the affine
diffeomorphism from Lemma 3.9. Note that Irefh (u ◦Φ) = (Ihu) ◦Φ. Define v := u ◦Φ and observe
that (u− Ihu) ◦ Φ = (1− Irefh )v. First, we apply the transformation formula to Φ−1,

‖Dk(u− Ihu)‖L2(T ) = ‖Dk((v − Irefh v) ◦ Φ−1)‖L2(T )

≤ |detB−1|−1/2‖B−1‖kF ‖Dk(v − Irefh v)‖L2(Tref )

≤ Cref |detB|1/2‖B−1‖kF ‖D2v‖L2(Tref ).

Second, we plug-in v = u ◦ Φ and apply the transformation formula to Φ,

‖D2v‖L2(Tref ) = ‖D2(u ◦Φ)‖L2(Tref ) ≤ |detB|−1/2‖B‖2F ‖D2u‖L2(T ).

The combination of the last two estimates proves that

‖Dk(u− Ihu)‖L2(T ) ≤ Cref‖B−1‖kF ‖B‖2F ‖D2u‖L2(T ) ≤ Cref 2
(k+2)/2h2T ̺

−k
T ‖D2u‖L2(T ),

where we have used the geometric interpretation of ‖B‖F and ‖B−1‖F . This proves that

‖u− Ihu‖L2(T ) ≤ 2Cref‖h2D2u‖L2(T ) and ‖∇(u− Ihu)‖L2(T ) ≤ 23/2Cref σ(T )‖hD2u‖L2(T ).

and thus concludes the proof. �

Remark. The proof of Theorem 3.5 shows that it is enough to assume u ∈ C(Ω) ∩H2(T ), where
Hk(T ) :=

{
u ∈ L2(Ω)

∣∣ ∀T ∈ T u ∈ Hk(T )
}
for k ≥ 1. According to the Sobolev inequality, it

holds that H2(Ω) ⊆ C(Ω) ∩H2(T ). For the broken Sobolev spaces Hk(T ), we write Dk
hv for the

T -piecewise k-th derivative of v and, in particular, ∇hv = D1
hv for the T -piecewise gradient. ✷

Remark. We recall the procedure of a scaling argument for proving an estimate. To that end, let
ΦT : Tref → T be the affine diffeomorphism with linear part B.

• First, transfer the left-hand side from T to Tref :

‖Dkv‖L2(T ) = ‖Dk(v ◦ΦT ◦ Φ−1T )‖L2(T ) ≤ |detB−1|−1/2 ‖B−1‖kF ‖Dk(v ◦ΦT )‖L2(Tref )

≃ |T | ̺−kT ‖Dk(v ◦ ΦT )‖L2(Tref ),

i.e., derivative on the left-hand side give rise to negative powers of ̺T .
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• Second, prove an appropriate estimate on the reference element Tref .

• Third, transfer the right-hand side from Tref to T :

‖Dℓ(w ◦ΦT )‖L2(Tref ) ≤ |detB|−1/2 ‖B‖ℓF ‖Dℓw‖L2(T ) ≃ |T |−1/2 hℓT ‖Dℓw‖L2(T ),

i.e., derivatives on the right-hand side give rise to positive powers of hT .

Plugging everything together, proves the desired estimate. ✷

Note that the heart of the proof of the approximation theorem is the Rellich theorem and thus
a compactness argument. The following exercise shows that approximation results are necessarily
proved by use of compactness.

Exercise 20. Let X be a Banach space and Y be a normed space with continuous inclusion
Y ⊆ X. For h → 0, let Xh be finite dimensional subspaces of X and Ih ∈ L(Y ;Xh) be a
continuous and linear operator with

‖u− Ihu‖X ≤ Chα ‖u‖Y for all u ∈ Y,

where the constants C,α > 0 are independent of u and h. Then, the continuous inclusion
Y ⊆ X is already compact. ✷
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Chapter 4

A Posteriori Analysis

4.1 Introduction

We consider the model problem

−∆u = f in Ω,

u = 0 on ΓD,

∂u/∂n = φ on ΓN .

(4.1)

Let u ∈ H1
D(Ω) be the weak solution of (4.1) and uh ∈ S1

D(T ) be the P1-FEM approximation of u.
In the previous chapter, we aimed to control the error ‖u−uh‖H1(Ω) by a priori knowledge, e.g., reg-
ularity of the given data and the exact solution (but essentially independent of the discrete solution
uh). Since u is unknown, in general, the a priori analysis provides a qualitative understanding
of the FEM, e.g., convergence with certain rates, but the derived bounds are non-computable in
practice. In this chapter, we aim to derive numerically computable bounds η = η(uh, f, φ,T ) for the
error ‖u−uh‖H1(Ω), which may depend on uh, the triangulation T , and the given data f and φ (but
not on the exact solution u). The quantity η is referred to as (a posteriori) error estimator,
and emphasis is laid on the fact that η can be computed algorithmically as soon as the discrete
solution uh ∈ S1

D(T ) has been computed. An error estimator η is called reliable provided that

‖u− uh‖H1(Ω) ≤ Crel η. (4.2)

Usually, the information η provides, is used to steer a mesh-refinement that leads to a sequence
Tℓ of regular meshes with nested spaces S1

D(Tℓ) ⊆ S1
D(Tℓ+1), i.e., Tℓ+1 is a certain refinement of

Tℓ. If η is reliable the (numerically or algorithmically observed) decrease of η to zero implies the
convergence of uh towards u. However, it might (formally) occur that uh tends to u, while η does
not tend to zero. Therefore, an error estimator η is called efficient provided that

Ceff η ≤ ‖u− uh‖H1(Ω). (4.3)

For an efficient error estimator η, the convergence of uh to u necessarily implies the convergence of
η to zero. Finally, if η is reliable and efficient, we observe for η the same order of convergence as
for ‖u− uh‖H1(Ω).

The aim of a posteriori error estimates is twofold:
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• We want to control the accuracy ‖u − uh‖H1(Ω) of a discrete solution uh and stop the com-
putation if uh is sufficiently accurate.

• The mesh-refinement should be steered automatically by the algorithm so that we are led to
the highest possible accuracy with the lowest number of degrees of freedom.

Remark. Throughout, we allow the cases ΓD = Γ as well as ΓD = ∅. In the latter case, (4.1)
becomes the Neumann problem, for which we have to assume the compatability condition

∫
Ω f dx+∫

Γ φds = 0. Then, u ∈ H1
∗ (Ω) and, even more important, the test space H1

∗ (Ω) in the weak
formulation can equivalently be replaced by the entire space H1(Ω). The same holds for the P1-
FEM, where uh ∈ S1

∗ (T ) and where the discrete test is S1
∗ (T ) or equivalently S1(T ). ✷

4.2 Scott-Zhang Projection

Since H1-functions are in general not continuous, nodal interpolation requires additional regularity
assumptions. In this section, we aim to provide some quasi-interpolation operator which is well-
defined for all u ∈ H1(Ω) and also has the projection property. We start with the following
elementary lemma

Lemma 4.1. For z ∈ K, choose an edge Ez ∈ E with z ∈ Ez. Then, there is a unique dual
function ψz ∈ P1(Ez) such that

∫

Ez

ψzζz′ ds = δzz′ for all z′ ∈ K. (4.4)

Moreover, it holds that ‖ψz‖L∞(Ez) ≤ C |Ez|−1 for some generic constant C > 0, which is in
particular independent of z and T .

Proof. According to the Riesz theorem, there is a unique function ψ̂ ∈ P1[0, 1] such that

∫ 1

0
ψ̂ φ̂ dt = φ̂(0) for all φ̂ ∈ P1[0, 1].

Let Φz : [0, 1] → Ez be an affine parametrization of the edge Ez with Φz(0) = z. We define

ψz :=
1

|Ez|
ψ̂ ◦ Φ−1z ∈ P1(Ez).

Clearly, ‖ψz‖L∞(Ez) ≤ ‖ψ̂‖L∞(0,1) |Ez|−1. Note that |Φ′z| = |Ez| and hence

∫

Ez

ψzζz′ ds =

∫ 1

0
(ψz ◦Φz) (ζz′ ◦Φz) |Φ′z| dt =

∫ 1

0
ψ̂(t) (ζz′ ◦ Φz)(t) dt = ζz′

(
Φz(0)

)
= ζz′(z).

This concludes the proof. �

Definition. For each node z ∈ K of T , we choose an edge Ez ∈ E such that

• Ez ⊆ ΓD for z ∈ ΓD,
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• Ez ⊆ Γ for z ∈ Γ,

• Ez arbitrary for z ∈ Ω.

Note that the precise choice is immaterial for the following analysis. For z ∈ K, let ψz ∈ P1(Ez)
be the corresponding dual function. Then, the Scott-Zhang projection is defined by

Jhv :=
∑

z∈K

(∫

Ez

ψzv ds
)
ζz. (4.5)

Clearly, Jh : H1(Ω) → S1(T ) is well-defined and linear. Our first proposition states that Jh is
in fact a projection which preserves discrete boundary data.

Proposition 4.2. For v ∈ H1(Ω) and vh ∈ S1(T ), the following properties (i)–(iii) are true:

(i) Jhvh = vh.

(ii) (Jhv)|ω depends only on the trace v|ω for ω ∈ {Γ,ΓD}.

(iii) v|ω = vh|ω implies that (Jhv)|ω = v|ω for ω ∈ {Γ,ΓD}.

Proof. (i) Note that vh =
∑

z′∈K vh(z
′)ζz′ . By choice of ψz, this shows

∫

Ez

ψzvh ds =
∑

z′∈K

vh(z
′)

∫

Ez

ψzζz′ ds = vh(z).

With this, we deduce

Jhvh =
∑

z∈K

( ∫

Ez

ψzvh ds
)
ζz =

∑

z∈K

vh(z) ζz = vh.

(ii) follows from the choice of the edges Ez. (iii) We consider only ω = ΓD. We first note that

(Jhw)|ΓD
=

∑

z∈K

( ∫

Ez

ψzw ds
)
ζz|ΓD

=
∑

z∈K∩ΓD

( ∫

Ez

ψzw ds
)
ζz|ΓD

for all w ∈ H1(Ω).

For z ∈ K ∩ ΓD, it holds that Ez ⊆ ΓD and hence
∫
Ez
ψzvh ds =

∫
Ez
ψzv ds. Together with the last

equation and the projection property, we obtain that

(Jhv)|ΓD
= (Jhvh)|ΓD

= vh|ΓD
.

This concludes the proof. �

Exercise 21. Show that Lemma 4.1 holds for any dimension d ≥ 2. ✷

Note that the Scott-Zhang projection Jhv is not defined for general L2-functions, since L2(T )
does not provide traces. However, one can define an appropriate variant as follows:

39



CHAPTER 4. A POSTERIORI ANALYSIS

Exercise 22. Construct a linear projection Ph : L2(Ω) → S1(T ) which satisfies

• ‖Phv‖L2(Ω) ≤ C ‖v‖L2(Ω) for all v ∈ L2(Ω).

• Phvh = vh for all vh ∈ S1(T ).

The constant C > 0 may only depend on σ(T ). Hint. Proceed as for the standard Scott-Zhang
projection. Instead of an edge Ez, associate with each node z ∈ K an arbitrary element Tz ∈ T
with z ∈ Tz. ✷

Next, we aim to show that the Scott-Zhang projection has local stability and approximation
properties. Unlike nodal interpolation, this will require appropriate patches.

Patch Ωz of a node z ∈ K Patch ΩE of an edge E ∈ E Patch ΩT of an element T ∈ T
Figure 4.1. For the a posteriori analysis, we need three types of patches ω ⊆ Ω, namely patches
of nodes, edges, and elements, respectively. Note that the patch of an edge (or of an element) just
is the union of the patches of its nodes.

Definition. For the a posteriori analysis, we need certain unions of elements, called patches, cf.
Figure 4.1: For a node z ∈ K, we define

Ω̃z :=
{
T ∈ T

∣∣ z ∈ KT

}
as well as Ωz :=

⋃
Ω̃z :=

{
x ∈ R2

∣∣∃T ∈ Ω̃z x ∈ T
}
. (4.6)

For an edge E ∈ E , we define

Ω̃E :=
{
T ∈ T

∣∣KE ∩ T 6= ∅
}
=

{
T ∈ Ω̃z

∣∣ z ∈ KE

}
as well as ΩE :=

⋃
Ω̃E. (4.7)

Finally, for an element T ∈ T , we define

Ω̃T :=
{
T ′ ∈ T

∣∣KT ∩ T ′ 6= ∅
}
=

{
T ′ ∈ Ω̃z

∣∣ z ∈ KT

}
as well as ΩT :=

⋃
Ω̃T . (4.8)

The patches Ωz, ΩE, and ΩT are visualized in Figure 4.1.

Lemma 4.3. There is a constant C > 0 which depends only on σ(T ), such that

• #Ω̃z ≤ C for all z ∈ K,

• #Ω̃E ≤ C for all E ∈ E,
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• #Ω̃T ≤ C for all T ∈ T ,

i.e., the number of elements per patch is uniformly bounded. Moreover,

• #
{
T ′ ∈ T

∣∣T ∈ Ω̃T ′

}
≤ C for all T ∈ T ,

i.e., an element T ∈ T belongs only to finitely many patches.

Proof. Note that σ(T ) provides a bound for the minimal interior angle of all elements T ∈ T ;
see Exercise 16. Consequently, there is a maximal number C > 0 of elements in Ω̃z, for all nodes
u ∈ K. By definition, there follows #Ω̃E ≤ 2C as well as #Ω̃T ≤ 3C. �

An essential consequence of Lemma 4.3 is that

‖v‖L2(Ω) ≤
( ∑

T∈T

‖v‖2L2(ΩT )

)1/2
≤ Cpatch ‖v‖L2(Ω) for all v ∈ L2(Ω),

where Cpatch > 0 depends only on σ(T ). Another consequence of Lemma 4.3 is that the diameter
diam(ΩT ) of a patch is proportional to hT = diam(T ). This is stated in the following lemma.

Lemma 4.4. For a regular triangulation, it holds that

• diam(Ωz) ≤ C hT for all z ∈ K and T ∈ Ω̃z,

• diam(ΩE) ≤ C hE ≤ C hT for all E ∈ E and T ∈ Ω̃E,

• diam(ΩT ′) ≤ C hT for all T ′ ∈ T and T ∈ Ω̃T ′.

The constant C > 0 depends only on σ(T ).

Proof. 1. step. Note that hT ≤ σ(T )̺T ≤ σ(T )hE for all T ∈ T and all edges E ∈ ET .
2. step. Patch of a node z ∈ K: For Ω̃z = {T1, . . . , Tn}, we may choose a numbering such

that Tj−1, Tj are neighbours, i.e., Tj−1 ∩ Tj ∈ E . From step 1, we derive hTj−1 ≤ σ(T )hTj , whence

hT ′ ≤ σ(T )n−1hT for all T, T ′ ∈ Ω̃z. This yields that

diam(Ωz) ≤ 2 max
T ′∈Ω̃z

hT ′ ≤ 2σ(T )n−1hT for all T ∈ Ω̃z.

3. step. Patch of an edge E ∈ E : With E = conv{z1, z2} for some z1, z2 ∈ K, it holds that
Ω̃E = Ω̃z1 ∪ Ω̃z2 as well as Ω̃z1 ∩ Ω̃z2 6= ∅. Let T ∈ Ω̃E and n := max{#Ω̃z1 ,#Ω̃z2}. Without loss
of generality, we may assume T ∈ Ω̃z1 . Choose T

′ ∈ Ω̃z1 ∩ Ω̃z2 . Then,

diam(ΩE) ≤ diam(Ωz1) + diam(Ωz2) ≤ 2σ(T )n−1(hT + hT ′) ≤ 2σ(T )n−1(1 + σ(T )n−1)hT .

4. step. Patch of an element T ∈ T : Simply use the same arguments as in step 3. �

The Scott-Zhang projection is locally H1-stable and has a local first-order approximation prop-
erty.
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Proposition 4.5. For all T ∈ T , it holds that

‖v − Jhv‖L2(T ) + hT ‖∇Jhv‖L2(T ) ≤ C hT ‖∇v‖L2(ΩT ) for all v ∈ H1(Ω). (4.9)

The constant C > 0 depends only on γ-shape regularity of T .

The proof requires the following technical lemmata which are also valid in any dimension d ≥ 2
as the proofs reveal.

Theorem 4.6 (Trace Inequality). Let T = conv{z0, . . . , zd} ⊂ Rd be a simplex in Rd with
|T | > 0 and diameter hT := diam(T ). Let E = conv{z1, . . . , zd} denote one particular side of
the simplex. Then, for v ∈ H1(T ), it holds

‖v‖2L2(E) ≤
|E|
|T |

(
‖v‖2L2(T ) +

2

d
hT ‖v∇v‖L1(T )

)
≤ |E|

|T | (1 + 2hT /d) ‖v‖2H1(T ). (4.10)

With the integral means vT := |T |−1
∫
T v dx and vE := h−1E

∫
E v ds, it holds that

‖v − vE‖2L2(E) ≤ ‖v − vT ‖2L2(E) ≤ C
|E|h2T
|T | ‖∇v‖2L2(T ), (4.11)

where C > 0 depends only on the reference element Tref and the dimension d.

The proof of the trace inequalities (4.10)–(4.11) is done with the help of the following lemma.
In particular, we shall that that both estimates are sharp. Note that, for d = 2, it holds that
|E|/|T | ≤ 2̺−1T and |E|h2T /|T | ≤ 2σ(T )hT .

Lemma 4.7 (Trace Identity). Let T = conv{z0, . . . , zd} ⊂ Rd be a simplex in Rd with
|T | > 0. Let E = conv{z1, . . . , zd} denote one particular side of the simplex. Then,

1

|E|

∫

E
w ds =

1

|T |

∫

T
w dx+

1

d|T |

∫

T
(x− z0) · ∇w dx (4.12)

for all w ∈ C1(T ).

Proof. We apply the Gauss Divergence Theorem to the function f(x) := w(x)(x − z0). With
div f(x) = ∇w(x) · (x− z0) + dw(x), we obtain that

d

∫

T
w dx+

∫

T
(x− z0) · ∇w(x) dx =

∫

T
div f dx =

∫

∂T
f · n ds.

Note that (x − z0) · n(x) = 0 for x ∈ ∂T\E, whereas (x − z0) · n(x) = dist(z0,H), where H ⊂ Rd

denotes the hyperplane with E ⊆ H. Therefore, the boundary integral simplifies to
∫
∂T f · n ds =

dist(z0,H)
∫
E w ds and the latter equality reads

1

|T |

∫

T
w dx+

1

d|T |

∫

T
(x− z0) · ∇w dx =

dist(z0,H)|E|
d|T |

1

|E|

∫

E
w ds,
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which holds for any w ∈ C1(T ). The special choice w = 1 can be used to determine the w-

independent constant dist(z0,H)|E|
d|T | = 1. This concludes the proof. �

Remark. Note that Lemma 4.7 holds for any w ∈ W 1,1(T ) :=
{
w ∈ L1(T ) weakly differentiable∣∣∇w ∈ L1(T )d

}
, even with the same proof. ✷

Proof of Theorem 4.6. According to standard density arguments, it suffices to consider
v ∈ C1(T ). Plugging w := v2 ∈ C1(T ) into the trace identity (4.12), we see that

1

|E|

∫

E
v2 ds =

1

|T |

∫

T
v2 dx+

1

d|T |

∫

T
(x− z0) · (2v∇v) dx.

This is rewritten in the form

|T |
|E| ‖v‖

2
L2(E) = ‖v‖2L2(T ) +

2

d

∫

T
(x− z0) · (v∇v) dx ≤ ‖v‖2L2(T ) +

2

d
hT ‖v∇v‖L1(T )

≤ (1 + 2hT /d) ‖v‖2H1(T )

which proves (4.10). For the proof of (4.11), we simply replace v by v− vT and apply the Poincaré
inequality. This leads to

‖v − vT ‖2L2(E) ≤
|E|
|T |

(
‖v − vT ‖2L2(T ) +

2

d
hT ‖v − vT ‖L2(T )‖∇v‖L2(T )

)

≤ |E|
|T |

(
C2
Ph

2
T ‖∇v‖2L2(T ) +

2

d
CPh

2
T ‖∇v‖2L2(T )

)

= (C2
P + 2CP /d)

|E|h2T
|T | ‖∇v‖2L2(T ).

The remaining estimate ‖v − vE‖L2(E) ≤ ‖v − vT ‖L2(E) follows from the L2-best approximation
property of the integral mean. �

Lemma 4.8 (Generalized Poincaré-Friedrichs inequality). Let v ∈ H1(Ω), T ∈ T , T ′ ∈
Ω̃T , and E

′ ∈ ET ′. Define the integral means vT := (1/|T |)
∫
T v dx, vT ′ := (1/|T ′|)

∫
T ′ v dx,

and vE′ := (1/|E′|)
∫
E′ v ds. Then,

‖vT − vT ′‖L2(T ) + ‖vT − vE′‖L2(T ) ≤ C hT ‖∇v‖L2(ΩT ). (4.13)

In particular, this implies that

‖v − vT ′‖L2(ΩT ) + ‖v − vE′‖L2(ΩT ) ≤ C hT ‖∇v‖L2(ΩT ). (4.14)

In either estimate, the constant C > 0 depends only on γ-shape regularity of T , but is inde-
pendent of Ω and the shape of ΩT .

Proof. To ease the notation, let vE := (1/|E|)
∫
E v ds also denote the integral mean over edges.

Let Tref denote the reference triangle and Eref = [0, 1] be the reference edge of Tref .
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1. step. For any w ∈ H1(T ), it holds that |wT − wE| ≤ Cref ‖∇w‖L2(Tref ), where Cref > 0
depends only on shape regularity: With the trace inequality (4.11) on T , we see that

|wT − wE | ≤ |E|−1 ‖w − wT ‖L1(E) ≤ |E|−1/2 ‖w − wT ‖L2(E)

≤ C
hT

|T |1/2 ‖∇w‖L2(T ) =: C ‖∇w‖L2(T )

2. step. For all T, T ′ ∈ T with E := T ∩ T ′ ∈ E , shape regularity and the triangle inequality
yield that

‖vT − vT ′‖L2(T ) = |T |1/2|vT − vT ′ | . |T |1/2|vT − vE |+ |T ′|1/2|vE − vT ′ |
= ‖vT − vE‖L2(T ) + ‖vT ′ − vE‖L2(T ′).

With Step 1, we thus see that

‖vT − vT ′‖L2(T ) . hT ‖∇v‖L2(T ) + hT ′‖∇v‖L2(T ′) . hT ‖∇v‖L2(T∪T ′),

where the hidden constant now depends on C > 0 from step 1 and from shape regularity of T .

3. step. If T ∩ T ′ 6= ∅, there is a minimal n ∈ N and elements T0, . . . , Tn ∈ T with T0 = T ,
Tj ∩ Tj−1 ∈ E and Tj ⊆ ΩT for all j = 1, . . . , n, and Tn = T ′. Note that n is uniformly bounded in
terms of the γ-shape regularity of T . Iterating the argument from Step 2, we conclude (4.13) with⋃n

j=0 Tj ⊆ ΩT . The overall constant then depends on C > 0 and γ.

4. step. For each element T ′′ ∈ Ω̃T , the Poincaré inequality and (4.13) show

‖v − vT ′‖L2(T ′′) + ‖v − vE′‖L2(T ′′)

. ‖v − vT ′′‖L2(T ′′) + ‖vT − vT ′‖L2(T ′′) + ‖vT − vT ′′‖L2(T ′′) + ‖vT − vE′‖L2(T ′′)

≃ ‖v − vT ′′‖L2(T ′′) + ‖vT − vT ′‖L2(T ) + ‖vT − vT ′′‖L2(T ) + ‖vT − vE′‖L2(T )

. hT ′′ ‖∇v‖L2(T ′′) + hT ‖∇v‖L2(ΩT )

. hT ‖∇v‖L2(ΩT ).

Summing this estimate over all T ′′ ∈ Ω̃T , we obtain that

‖v − vT ′‖L2(ΩT ) + ‖v − vE′‖L2(ΩT ) . hT ‖∇v‖L2(ΩT ),

where the hidden constants depends only on γ-shape regularity of T . �

Proof of Proposition 4.5 (H1-stability). For z ∈ K, let Ez ⊂ Tz ∈ T and hz := diam(Tz).
Note that Tz ⊆ ΩT for z ∈ T . The trace inequality (4.10) yields that

‖v‖2L2(Ez)
. h−1z

(
‖v‖2L2(Tz)

+ hz ‖v‖L2(Tz)‖∇v‖L2(Tz)

)
. h−1z

(
‖v‖2L2(Tz)

+ h2z ‖∇v‖2L2(Tz)

)

With this and Lemma 4.1, we see that

∣∣∣
∫

Ez

ψzv ds
∣∣∣ ≤ ‖ψz‖L∞(Ez)‖v‖L1(Ez) . |Ez |−1/2 ‖v‖L2(Ez)

. |Ez |−1/2 h−1/2z

(
‖v‖L2(Tz) + hz‖∇v‖L2(Tz)

)
.
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For any hat function, an inverse estimate shows

‖∇ζz‖L2(T ) . h−1T ‖ζz‖L2(T ) ≤ |T |1/2h−1T .

Together with |Ez|hz ≃ |Tz| ≃ |T | and hz ≃ hT , we therefore obtain that, for all v ∈ H1(Ω),

‖∇Jhv‖L2(T ) ≤
∑

z∈K∩T

∣∣∣
∫

Ez

ψzv ds
∣∣∣‖∇ζz‖L2(T ) .

∑

z∈K∩T

(
h−1z ‖v‖L2(Tz) + ‖∇v‖L2(Tz)

)
. (4.15)

With the integral mean vT := (1/|T |)
∫
T v dx and the projection property JhvT = vT , we apply the

last estimate for w := v − vT and see that

‖∇Jhv‖L2(T ) = ‖∇Jh(v − vT )‖L2(T ) .
∑

z∈K∩T

(
h−1z ‖v − vT ‖L2(Tz) + ‖∇v‖L2(Tz)

)
.

According to the Poincaré inequality and Lemma 4.8, it holds that for all z ∈ K ∩ T ,

‖v − vT ‖L2(Tz) ≤ ‖v − vTz‖L2(Tz) + ‖vTz − vT ‖L2(Tz) . hz ‖∇v‖L2(ΩT ). (4.16)

Combining the last two estimates, we thus conclude ‖∇Jhv‖L2(T ) . ‖∇v‖L2(ΩT ). �

Proof of Proposition 4.5 (approximation property). We adopt the notation from the proof
of local H1-stability. Arguing as for (4.15), we see that

‖Jhv‖L2(T ) ≤
∑

z∈K∩T

∣∣∣
∫

Ez

ψzv ds
∣∣∣‖ζz‖L2(T ) .

∑

z∈K∩T

(
‖v‖L2(Tz) + hz ‖∇v‖L2(Tz)

)
. (4.17)

With the integral mean vT := (1/|T |)
∫
T v dx and the projection property JhvT = vT , we apply the

last estimate for w := v − vT and see that

‖v − Jhv‖L2(T ) = ‖(v − vT )− Jh(v − vT )‖L2(T )

≤ ‖v − vT ‖L2(T ) + ‖Jh(v − vT )‖L2(T )

. hT ‖∇v‖L2(T ) +
∑

z∈K∩T

(
‖v − vT ‖L2(Tz) + hz ‖∇v‖L2(Tz)

)

Finally, we employ (4.16) and hz ≃ hT to conclude ‖v − Jhv‖L2(T ) . hT ‖∇v‖L2(ΩT ). �

The following theorem concludes the main properties of the Scott-Zhang projection:

Theorem 4.9. The Scott-Zhang projection Jh : H1(Ω) → S1(T ) has the following properties
(i)–(vii):

(i) Jh is linear and continuous with respect to the H1-norm, i.e.,

‖Jhv‖H1(Ω) ≤ C (1 + diam(Ω)) ‖v‖H1(Ω) for all v ∈ H1(Ω). (4.18)

(ii) Jh is a projection onto S1(T ), i.e.,

Jhvh = vh for all vh ∈ S1(T ). (4.19)

45



CHAPTER 4. A POSTERIORI ANALYSIS

(iii) Jh preserves discrete boundary data, i.e., for ω ∈ {ΓD,Γ} it holds that

(Jhv)|ω = v|ω for all v ∈ H1(Ω) with v|ω ∈ S1(T |ω). (4.20)

(iv) Jh is locally H1-stable, i.e.,

‖∇Jhv‖L2(T ) ≤ C ‖∇v‖L2(ΩT ) for all v ∈ H1(Ω) and T ∈ T . (4.21)

(v) Jh has a local first-order approximation property, i.e.,

‖(1− Jh)v‖L2(T ) ≤ ChT ‖∇v‖L2(ΩT ) for all v ∈ H1(Ω) and T ∈ T . (4.22)

(vi) Ph is quasi-optimal in the sense of the Céa lemma, i.e.,

‖(1− Jh)v‖H1(Ω) ≤ C(1 + diam(Ω)) min
vh∈S1(T )

‖v − vh‖H1(Ω) for all v ∈ H1(Ω). (4.23)

(vii) For all α ∈ R, Jh is quasi-optimal in the sense of

‖hα∇(1− Jh)v‖L2(Ω) ≤ C min
vh∈S1(T )

‖hα∇(v − vh)‖L2(Ω). (4.24)

The constant C > 0 in (i)–(vii) depends only on γ-shape regularity of T .

Proof. (ii)–(v) have already been shown, and (i) is a direct consequence of (vi) and the triangle
inequality. (vii) Let vh ∈ S1(T ). With the projection property of Jh and (iv), we see that, for all
T ∈ T ,

‖∇(1− Jh)v‖L2(T ) = ‖∇(1− Jh)(v − vh)‖L2(T ) . ‖∇(v − vh)‖L2(ΩT ).

With γ-shape regularity and hence hT ≃ hT ′ for all T ′ ⊆ ΩT , we infer

‖hα∇(1− Jh)v‖L2(T ) . ‖hα∇(v − vh)‖L2(ΩT ).

Using the γ-shape regularity again, this results in

‖hα∇(1− Jh)v‖2L2(Ω) =
∑

T∈T

‖hα∇(1− Jh)v‖2L2(T ) .
∑

T∈T

‖hα∇(v − vh)‖2L2(ΩT )

. ‖hα∇(v − vh)‖2L2(Ω).

This proves (vii) with an infimum on the right-hand side. Due to finite dimension, this infimum is,
in fact, attained. To prove (vi), it remains to estimate the L2-part and use α = 0 in (vii). With
the projection property of Jh and (v), shape regularity yields that

‖(1 − Jh)v‖2L2(Ω) =
∑

T∈T

‖(1 − Jh)(v − vh)‖2L2(T ) .
∑

T∈T

h2T ‖∇(v − vh)‖2L2(ΩT )

. diam(Ω)2 ‖∇(v − vh)‖2L2(Ω).
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Altogether, we thus see that

‖(1− Jh)v‖2H1(Ω) . (1 + diam(Ω)2) ‖∇(v − vh)‖2L2(Ω). . (1 + diam(Ω))2 ‖v − vh‖2H1(Ω).

This concludes the proof of (vi). �

Remark. Theorem 4.9 holds for any dimension d ≥ 2 and for any fixed polynomial degree p ≥ 1.
✷

One drawback of the Scott-Zhang projection is that it is not positivity conserving, i.e., v ≥ 0
does not necessarily imply that Jhv ≥ 0.

Exercise 23. Suppose that T is a regular triangulation of Ω := [0, 1]2 into 2 triangles. Find
an example of a function v ∈ H1(Ω) with v ≥ 0 such that there exists some x ∈ Ω with Jhv < 0.
Hint. Compute the function ψ̂ ∈ P1(0, 1) from Lemma 4.1 explicitly. ✷

Exercise 24. Extend the approach of Exercise 22 and construct an operator Ph : L2(Ω) →
S1
D(T ) with the following properties:

(i) Ph : L2(Ω) → S1
D(T ) is a well-defined linear projection,

Phvh = vh for all vh ∈ S1
D(T ).

(ii) Ph is locally L2-stable, i.e., for all T ∈ T , it holds that

‖(1− Ph)v‖L2(T ) ≤ C ‖v‖L2(ΩT ) for all v ∈ L2(Ω).

(iii) Ph is locally H1
D-stable, i.e., for all T ∈ T , it holds that

‖∇(1− Ph)v‖L2(T ) ≤ C ‖∇v‖L2(ΩT ) for all v ∈ H1
D(Ω).

(iv) Ph has a local first-order approximation property

‖(1− Ph)v‖L2(T ) ≤ ChT ‖∇v‖L2(ΩT ) for all v ∈ H1
D(Ω).

(v) Ph : L2(Ω) → L2(Ω) as well as Ph : H1
D(Ω) → H1

D(Ω) are bounded linear operators.

(vi) Jh is quasi-optimal in the sense of the Céa lemma, i.e.,

‖(1− Ph)v‖H1(Ω) ≤ C min
vh∈S

1
D(T )

‖v − vh‖H1(Ω) for all v ∈ H1
D(Ω).

(vii) For all α ∈ R, Ph is quasi-optimal in the sense of

‖hα(1− Ph)v‖L2(Ω) ≤ C min
vh∈S

1
D(T )

‖hα(v − vh)‖L2(Ω) for all v ∈ L2(Ω).
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(viii) For all α ∈ R, Ph is quasi-optimal in the sense of

‖hα∇(1− Ph)v‖L2(Ω) ≤ C min
vh∈S

1
D(T )

‖hα∇(v − vh)‖L2(Ω) for all v ∈ H1
D(Ω).

The constant C > 0 in (i)–(viii) depends only on γ-shape regularity of T . Hint. Let KF :=
K\ΓD denote the free nodes, where possibly KF = K for ΓD = ∅. Then, Ph can be chosen as

Phv =
∑

z∈KF

(∫

Tz

vψz dx
)
ζz

with appropriate Tz ∈ T and ψz ∈ P1(Tz). ✷

Definition. The Scott-Zhang projection is just a special example of a Clément-type quasi-
interpolation operator: We say that an operator Jh : H1

D(Ω) → S1
D(T ) is a Clément-type

quasi-interpolation operator if, for all v ∈ H1
D(Ω) and all T ∈ T , it holds that

• it is locally H1-stable

‖∇(1− Jh)v‖L2(T ) ≤ C ‖∇v‖L2(ΩT ), (4.25)

• and has a local first-order approximation property

‖(1 − Jh)v‖L2(T ) ≤ ChT ‖∇v‖L2(ΩT ). (4.26)

The constant C > 0 may only depend on γ-shape regularity of T (and possibly the shapes of
possible patches in T ).

For the a posteriori error analysis, we shall need the following simple consequence.

Lemma 4.10. Suppose that Jh : H1
D(Ω) → S1

D(T ) is a Clément-type operator, i.e., (4.25)–
(4.26) hold. Let T ∈ T and E ∈ ET . Then, it holds that

‖(1 − Jh)v‖L2(E) ≤ Ch
1/2
E ‖∇v‖L2(ΩT ) for all v ∈ H1

D(Ω). (4.27)

The constant C > 0 depends only on γ-shape regularity of T .

Proof. We apply the trace inequality

‖w‖2L2(E) . h−1T

(
‖w‖2L2(T ) + hT ‖w‖L2(T )‖∇w‖L2(T )

)

for w := (1− Jh)v ∈ H1
D(Ω). With the Clément properties (4.25)–(4.26), this yields that

‖(1− Jh)v‖2L2(E) . hT ‖∇v‖2L2(ΩT ).

Shape regularity and hence hT ≃ hE concludes the proof. �

The following example is one further classical example of a Clément-type operator. The analysis
will be left to the reader, but requires the following simple observation:
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Exercise 25. Use a scaling argument to show that

C−1hT ‖∇vh‖L∞(T ) ≤ ‖∇vh‖L2(T ) ≤
hT√
2
‖∇vh‖L∞(T ) for all vh ∈ Pm(T ),

where the constant C > 0 only depends on σ(T ) and the polynomial degree m ∈ N0. ✷

Exercise 26. Let KF := K\ΓD denote the free nodes (where possibly KF = K if ΓD = ∅).
Define

Jhv :=
∑

z∈KF

vzζz with vz :=
1

|Ωz|

∫

Ωz

v dx, (4.28)

where Ωz ⊆ Ω denotes the patch of a node z ∈ K. Prove that Jh satisfies the following
properties:

(i) Jh : L2(Ω) → S1
D(T ) is a well-defined linear operator.

(ii) Jh is locally L2-stable, i.e., for all T ∈ T , it holds that

‖(1− Jh)v‖L2(T ) ≤ C ‖v‖L2(ΩT ) for all v ∈ L2(Ω).

(iii) Jh is locally H1
D-stable, i.e., for all T ∈ T , it holds that

‖∇(1− Jh)v‖L2(T ) ≤ C ‖∇v‖L2(ΩT ) for all v ∈ H1
D(Ω).

(iv) Jh has a local first-order approximation property

‖(1− Jh)v‖L2(T ) ≤ ChT ‖∇v‖L2(ΩT ) for all v ∈ H1
D(Ω).

(v) Jh : L2(Ω) → L2(Ω) as well as Jh : H1
D(Ω) → H1

D(Ω) are bounded linear operators.

(vi) Jh is positivity preserving, i.e., Jhv ≥ 0 for all v ∈ L2(Ω) with v ≥ 0.

(vii) With Πh : L2(Ω) → P0(T ) the L2-orthogonal projection onto P0(T ), it holds that
JhΠh = Jh.

The constant C > 0 depends only on γ-shape regularity of T . ✷

Exercise 27. Find a counter example which shows that the operator Jh from Exercise 26 is
no projection, i.e., it holds that Jhvh 6= vh for some vh ∈ S1

D(T ). ✷
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4.3 Residual-Based Error Estimator

Residual-based a posteriori error estimates follow a general strategy. Recall that the weak solution
u ∈ H1

D(Ω) of (4.1) solves the variational form

(∇u ; ∇v)L2(Ω) = (f ; v)L2(Ω) + (φ ; v)L2(ΓN ) for all v ∈ H1
D(Ω). (4.29)

For an approximation uh ∈ S1
D(T ) it is thus natural to define the residual Rh ∈ H1

D(Ω)
∗ by

Rh(v) := (f ; v)L2(Ω) + (φ ; v)L2(ΓN ) − (∇uh ; ∇v)L2(Ω), (4.30)

i.e., Rh = 0 if and only if uh = u. Let |||w||| := ‖∇w‖L2(Ω) denote the energy norm on H1
D(Ω) and

|||Φ|||∗ := sup
w∈H1

D(Ω)\{0}

Φ(w)

|||w|||

the induced operator norm on H1
D(Ω)

∗, where we stress that both are equivalent norms on H1
D(Ω)

and its dual space, respectively. Then, the Riesz theorem and Rh(v) = (∇(u− uh) ; ∇v)L2(Ω) yield

|||Rh|||∗ = |||u− uh|||.

To derive a reliable error estimator η, we thus need to prove an estimate of the type

Rh(v) ≤ C̃rel η |||v||| for all v ∈ H1
D(Ω). (4.31)

To derive an efficient error estimator η, we need to show

Rh(v) ≥ C̃eff η |||v||| for some v ∈ H1
D(Ω)\{0}, (4.32)

where this v ∈ H1
D(Ω) has to be constructed appropriately.

Exercise 28. Prove that reliability (4.2) of an error estimator η is, in fact, equivalent to (4.31).
Prove that efficiency (4.3) of η holds if and only if (4.32) holds. ✷

So far, our observations did not use that we are dealing with Galerkin schemes. We stress that
the Galerkin orthogonality reads

Rh(vh) = 0 for all vh ∈ S1
D(T ) (4.33)

with respect to the residual Rh. To provide a reliable (and residual-based) error estimator η,
we will use some Clément-type operator Jh : H1(Ω) → S1

D(Ω) in connection with the Galerkin
orthogonality (4.33).

Before introducing a first a posteriori error estimator, we introduce the following notational
conventions. We define the T -piecewise resp. E-piecewise constant mesh-width functions

hT |T := hT and hE |T := hE
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for elements T ∈ T and edges E ∈ E , respectively. Moreover, we write

‖h1/2E ψ‖L2(E∗) :=
( ∑

E∈E∗

hE‖ψ‖2L2(E)

)1/2

for any set E∗ ⊆ E of edges and any function ψ which belongs to L2(E) for all E ∈ E∗. Recall
that ED and EN denote the Dirichlet and Neumann edges of T , respectively. Moreover, let EΩ
denote the set of all interior edges, i.e., for E ∈ EΩ, there are unique elements T+

E , T
−
E ∈ T with

E = T+
E ∩ T−E . Finally, for E ∈ EΩ, we define the jump of the normal derivative by

[[∂nuh]]E :=
∂uh

∂n+E
+
∂uh

∂n−E
∈ R, (4.34)

where n±E denote the outer normal vectors of the elements T±E on the edge E. Note that n+E = −n−E
so that the sum in the definition is, in fact, a difference.

Theorem 4.11. The error estimator

η :=
(
‖hT f‖2L2(Ω) + ‖h1/2E [[∂nuh]]‖2L2(EΩ) + ‖h1/2E (φ− ∂nuh)‖2L2(EN )

)1/2
(4.35)

satisfies the reliability estimate

‖u− uh‖H1(Ω) ≤ C η, (4.36)

where the constant C > 0 depends only on γ-shape regularity of T .

Proof. For all w ∈ H1
D(Ω), elementwise integration by parts proves

Rh(w) = (f ; w)L2(Ω) + (φ ; w)L2(ΓN ) −
∑

T∈T

(∇uh ; ∇w)L2(T )

= (f ; w)L2(Ω) +
∑

E∈EN

(φ ; w)L2(E) −
∑

T∈T

(∂nuh ; w)L2(∂T )

=
∑

T∈T

(f ; w)L2(T ) +
∑

E∈EN

(φ− ∂nuh ; w)L2(E) −
∑

E∈EΩ

([[∂nuh]] ; w)L2(E)

≤
∑

T∈T

‖f‖L2(T )‖w‖L2(T ) +
∑

E∈EN

‖φ− ∂nuh‖L2(E)‖w‖L2(E) +
∑

E∈EΩ

‖[[∂nuh]]‖L2(E)‖w‖L2(E).

For arbitrary v ∈ H1
D(Ω), we now choose w = v − Jhv and note that Rh(v) = Rh(w) according

to the Galerkin orthogonality. Then, we estimate the three sums separately. The approximation
property of the Clément-type operator Jh and Lemma 4.3 imply

∑

T∈T

‖f‖L2(T )‖v − Jhv‖L2(T ) .
( ∑

T∈T

‖hT f‖2L2(T )

)1/2( ∑

T∈T

‖∇v‖2L2(ΩT )

)1/2

.
( ∑

T∈T

‖hT f‖2L2(T )

)1/2( ∑

T∈T

‖∇v‖2L2(T )

)1/2

= ‖hT f‖L2(Ω)‖∇v‖L2(Ω).
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For each edge E ∈ E , we choose an arbitrary element TE ∈ T with E ∈ ETE
. Let E∗ ⊂ E and

ψ ∈ L2(E) for all E ∈ E∗. Recall that ‖(1 − Jh)v‖L2(E) . h
1/2
E ‖∇v‖L2(ΩTE

). Therefore, the same
arguments as before prove

∑

E∈E∗

‖ψ‖L2(E)‖v − Jhv‖L2(E) .
( ∑

E∈E∗

‖h1/2E ψ‖2L2(E)

)1/2( ∑

E∈E∗

‖∇v‖2L2(ΩTE
)

)1/2

. ‖h1/2E ψ‖L2(E∗)‖∇v‖L2(Ω),

where we note that an element T ∈ T may satisfy T = TE for at most three edges. Altogether, we
now see

Rh(v) . ‖∇v‖L2(Ω)

(
‖hT f‖L2(Ω) + ‖h1/2E [[∂nuh]]‖L2(EΩ) + ‖h1/2E (φ− ∂nuh)‖L2(EN )

)

≤
√
3 ‖∇v‖L2(Ω) η.

The hidden constant C depends only (on the Clément operator Jh and) on γ-shape regularity of
T . �

Remark. Note that we have used uh ∈ S1(T ) in the sense that the elementwise Laplacian satisfies
∆uh|T = 0 for all T ∈ T . For general T -piecewise polynomials, the same proof applies with
‖hT f‖L2(Ω) replaced by ‖hT (f +∆uh)‖L2(Ω). ✷

Exercise 29. We consider the mixed boundary value problem

−∆u = f in Ω,

u = uD on ΓD,

∂nu = φ on ΓN .

with inhomogeneous Dirichlet data uD ∈ H1/2(ΓD). Let u ∈ H1(Ω) denote the weak solution
and uh ∈ S1(Th) the P1-FEM solution for discrete Dirichlet data uDh := ûDh|ΓD

with ûDh ∈
S1(Th). Use the additional problem

−∆w = 0 in Ω,

w = uD − uDh on ΓD,

∂nu = 0 on ΓN .

with weak solution w ∈ H1(Ω) to derive a reliable error estimator for ‖u− uh‖H1(Ω).

Hint. Prove that ‖w‖H1(Ω) ≃ ‖uD − uDh‖H1/2(ΓD), where the right-hand side is already an

a posteriori term. Then, consider the residual R̃h ∈ H1
D(Ω)

∗ corresponding to the function
(u− uh)− w ∈ H1

D(Ω). ✷

Next, we prove the efficiency of the residual-based error estimator η from (4.35) — at least up
to terms of higher order. The efficiency estimate even holds locally with refined patches ωE and
ωT shown in Figure 4.2: For an interior edge E ∈ EΩ, let T+

E , T
−
E ∈ T be the unique elements with
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Patch ωE of an edge E ∈ E Patch ωT of an element T ∈ T
Figure 4.2. To prove the efficiency estimate, it suffices to consider smaller patches ωE ⊆ ΩE

and ωT ⊆ ΩT , for edges E ∈ E and elements T ∈ T , respectively. For comparison with the larger
patches ΩE and ΩT , the reader may consider Figure 4.1 on page 40.

E = T+
E ∩ T−E . For a boundary edge E ∈ EΓ, there is a unique element TE ∈ T with E ∈ ETE

. We
define the refined patch of an edge E ∈ E by

ωE :=

{
T+
E ∪ T−E for E ∈ EΩ,
TE for E ∈ EΓ.

(4.37)

Moreover, we define the refined patch of an element T ∈ T by

ωT :=
⋃{

ωE

∣∣E ∈ ET
}
. (4.38)

Note that ωE ⊆ ΩE and ωT ⊆ ΩT , so that Lemma 4.3 and Lemma 4.4 even hold for the refined
patches.

Usually, one is interested in error estimators which are localized with respect to the elements
or the edges of T , respectively. For instance, one considers the element-based residual error
estimator

ηT :=
( ∑

T∈T

η2T

)1/2
, (4.39)

where

ηT =
(
h2T ‖f‖2L2(T ) + hT ‖[[∂nuh]]‖2L2(∂T∩Ω) + hT ‖φ− ∂nuh‖2L2(∂T∩ΓN )

)1/2
(4.40)

or the edge-based residual error estimator

ηE :=
( ∑

E∈E

η2E

)1/2
, (4.41)

where

ηE =





(
h2E‖f‖2L2(ωE) + hE‖[[∂nuh]]‖2L2(E)

)1/2
for E ∈ EΩ,(

h2E‖f‖2L2(ωE) + hE‖φ− ∂nuh‖2L2(E)

)1/2
for E ∈ EN ,

0 for E ∈ ED.
(4.42)
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Alternatively, one could also define

ηT ∪E :=
( ∑

T∈T

η2T +
∑

E∈E

η2E

)1/2
, (4.43)

where

ηT = hT ‖f‖L2(T ), (4.44a)

ηE =





h
1/2
E ‖[[∂nuh]]‖L2(E) for E ∈ EΩ,
h
1/2
E ‖φ− ∂nuh‖L2(E) for E ∈ EN ,

0 for E ∈ ED.
(4.44b)

Note that ηT as well as ηE are equivalent to the error estimator η from (4.35): There holds

η = ηT ∪E ≤ ηT ≤
√
2σ(Th)1/2 η as well as σ(T )−1 η ≤ ηE ≤

√
3 η,

since ηT adds the contributions of interior edges twice and hE ≤ hT ≤ σ(Th)hE for each edge
E ∈ ET , whereas ηE adds the element contribution at most three times. The local quantities
ηT and ηE can be used to steer an adaptive mesh-refining algorithm. They are therefore called
refinement indicators. We are going to discuss adaptive mesh-refinement below.

Theorem 4.12 (inverse estimate). For all polynomial degrees m ∈ N and k, r ∈ N with
k > r, there exists a constant C > 0 such that

‖Dkvh‖L2(T ) ≤ Cσ(T )hr−kT ‖Drvh‖L2(T ) for all vh ∈ Pm(T ) and all T ∈ T , (4.45)

where Pm(T ) :=
{
vh : Ω → R

∣∣∀T ∈ T vh|T ∈ Pm(T )
}
.

Proof. The proof is done T -elementwise and follows from a scaling argument. We start with an
abstract observation.

1. step. Let X be a finite dimensional space, ‖ · ‖X be a norm on X and | · |X be a seminorm
on X. Then, there exists a constant C > 0 such that

|x|X ≤ C ‖x‖X for all x ∈ X :

We consider the quotient space X/Y , where Y :=
{
x ∈ X

∣∣ |x|X = 0
}
. Note that X/Y is finite

dimensional and that

‖x+ Y ‖X/Y := inf
y∈Y

‖x+ y‖X as well as |x+ Y |X/Y := inf
y∈Y

|x+ y|X = |x|X

are norms on the finite dimensional space X/Y . Therefore, there is a norm equivalence constant
C > 0 such that

|x|X = |x+ Y |X/Y ≤ C ‖x+ Y ‖X/Y ≤ C ‖x‖X for all x ∈ X.

2. step. There exists a constant Cref > 0 such that

‖Dkwh‖L2(Tref ) ≤ Cref‖Drwh‖L2(Tref ) for all wh ∈ Pm(Tref).

54



CHAPTER 4. A POSTERIORI ANALYSIS

This follows from the abstract framework for X = Pm(Tref).

3. step. Proof of the statement: Let Φ : Tref → T be an affine diffeomorphism and B ∈ R2×2

its linear part. We apply the transformation formula to Φ−1 to see that

‖Dkvh‖L2(T ) ≤ |detB−1|−1/2‖B−1‖kF ‖Dk(vh ◦ Φ)‖L2(Tref ).

Note that the L2-norm can be estimated by step 2 since vh ◦Φ ∈ Pm(Tref). The application of the
transformation formula to Φ proves that

‖Dr(vh ◦Φ)‖L2(Tref ) ≤ |detB|−1/2‖B‖rF ‖Drvh‖L2(T ).

By definition of the shape regularity constant σ(T ), we obtain that

‖Dkvh‖L2(T ) ≤ Cref ‖B−1‖kF ‖B‖rF ‖Drvh‖L2(T ) ≤
√
2Cref̺

−k
T hrT ‖Drvh‖L2(T )

≤
√
2Cref σ(T )hr−kT ‖Drvh‖L2(T ),

where we have used that ‖B−1‖F ≤
√
2 ̺−1T . This concludes the proof. �

Theorem 4.13. We define fT ∈ P0(T ) by fT |T := |T |−1
∫
T f dx and φE ∈ P0(EN ) by

φE |E := h−1E

∫
E φds. For each element T ∈ T , the refinement indicator ηT from (4.40) satisfies

ηT ≤ C
(
‖∇(u− uh)‖2L2(ωT ) + ‖hT (f − fT )‖2L2(ωT ) + ‖h1/2E (φ− φE )‖2L2(∂T∩ΓN )

)1/2
. (4.46)

Moreover, the error estimator η from (4.35) is efficient in the sense that

η ≤ C
(
‖u− uh‖H1(Ω) + ‖hT (f − fT )‖L2(Ω) + ‖h1/2E (φ− φE)‖L2(ΓN )

)
. (4.47)

The constant C > 0 only depends on the shape regularity constant σ(T ).

Remark. For f ∈ H1(T ) holds ‖hT (f − fT )‖L2(Ω) = O(h2). For φ ∈ C1(EN ) holds ‖h1/2E (φ −
φE)‖L2(ΓN ) = O(h3/2). Even for u ∈ H2(Ω), the error as well as the error estimator η only satisfy
‖u− uh‖H1(Ω) = O(h) = η. Therefore, the two terms on the right-hand side are of higher order. ✷

Proof of Theorem 4.13. 1. step. Estimate (4.47) is a consequence of (4.46) since

η ≤ ηT =
( ∑

T∈T

η2T

)1/2
≤ 2C

(
‖u− uh‖H1(Ω) + ‖hT (f − fT )‖L2(Ω) + ‖h1/2E (φ− φE )‖L2(ΓN )

)
.

Here, the factor 2 = 41/2 appears since each element T ∈ T belongs at most to four patches ωT ′ .

The proof of (4.46) is split into three steps, where we consider each of the three contributions
of ηT separately.

2. step. There holds

‖hT f‖L2(T ) ≤ C
(
‖∇(u− uh)‖L2(T ) + ‖hT (f − fT )‖L2(T )

)
: (4.48)
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For T ∈ T , we define the element bubble function

bT :=
∏

z∈KT

ζz ∈ H1
0 (T ) ∩ P3(T )

as product of all three hat functions. It is essential to observe the following estimate

‖fT bT ‖L2(T ) ≤ ‖fT b1/2T ‖L2(T ) ≤ ‖fT ‖L2(T ) ≤ Cref‖fT bT ‖L2(T ), (4.49)

where the existence of an independent constant Cref > 0 follows from a scaling argument. We
stress, however, that ‖fT bT ‖L2(T ) and hence Cref — since fT is constant on T — can explicitly be
computed. In the following, the main idea is to use integration by parts for v := fT bT ∈ H1

0 (T ) to
show

C−2ref ‖fT ‖2L2(T ) ≤ ‖fT b1/2T ‖2L2(T ) = (fT ; v)L2(T ) = (fT − f ; v)L2(T ) + (f −∆uh ; v)L2(T )

= (fT − f ; v)L2(T ) + (∇(u− uh) ; ∇v)L2(T ).

Now, we estimate each of the two scalar products on the right-hand side by use of the Cauchy
inequality. Together with v = fT bT ∈ P3(T ) we observe

(fT − f ; v)L2(T ) ≤ ‖fT − f‖L2(T )‖fT bT ‖L2(T ) ≤ ‖fT − f‖L2(T )‖fT ‖L2(T )

as well as

(∇(u− uh) ; ∇v)L2(T ) ≤ ‖∇(u− uh)‖L2(T )‖∇(fT bT )‖L2(T )

≤ Cinvh
−1
T ‖∇(u− uh)‖L2(T )‖fT bT ‖L2(T )

≤ Cinvh
−1
T ‖∇(u− uh)‖L2(T )‖fT ‖L2(T ).

Altogether, we see

hT ‖fT ‖L2(T ) ≤ C2
ref

(
hT ‖fT − f‖L2(T ) + Cinv‖∇(u− uh)‖L2(T )

)
,

which finally results in

hT ‖f‖L2(T ) ≤ (1 + C2
ref)

(
hT ‖fT − f‖L2(T ) + Cinv‖∇(u− uh)‖L2(T )

)
.

3. step. For an interior edge E ∈ EΩ, there holds

h
1/2
E ‖[[∂nuh]]‖L2(E) ≤ C

(
‖∇(u− uh)‖L2(ωE) + ‖hT (f − fT )‖L2(ωE)

)
: (4.50)

To prove this estimate, we define the edge bubble function

bE :=
∏

z∈KE

ζz ∈ H1
0 (ωE) ∩ P2(T ).

The essential estimate reads

‖bE‖L2(E) ≤ ‖b1/2E ‖L2(E) ≤ h
1/2
E ≤ Cref‖bE‖L2(E), (4.51)
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where the constant Cref > 0 is independent of E. In particular, this provides

C−2ref ‖[[∂nuh]]‖2L2(E) ≤ ‖[[∂nuh]]b1/2E ‖2L2(E) = ([[∂nuh]] ; [[∂nuh]]bE)L2(E).

Let T+
E , T

−
E ∈ T be the unique elements with T+

E ∩ T−E = E and ωE = T+
E ∪ T−E . Note that

v := [[∂nuh]]bE ∈ P2(T±E ) satisfies v|∂T±
E \E

= 0. Therefore, integration by parts on T±E proves

([[∂nuh]] ; v)L2(E) = (∂nuh ; v)L2(∂T+
E ) + (∂nuh ; v)L2(∂T−

E )

= (∇uh ; ∇v)L2(ωE)

= (∇(uh − u) ; ∇v)L2(ωE) + (f ; v)L2(ωE)

≤
(
Cinv‖∇(uh − u)‖L2(ωE) + ‖hT f‖L2(ωE)

)
‖h−1T v‖L2(ωE),

where we have applied the Cauchy inequality and an inverse estimate for v ∈ P2(T ). For T ∈
{T+

E , T
−
E } holds

‖v‖L2(T ) = |[[∂nuh]]E |‖bE‖L2(T ) ≤ |T |1/2|[[∂nuh]]E | ≤
h
1/2
T√
2
‖[[∂nuh]]‖L2(E),

since |T | ≤ 1
2hThE . From this, we infer

h
1/2
E ‖h−1T v‖L2(ωE) ≤ ‖h−1/2T v‖L2(ωE) ≤ ‖[[∂nuh]]‖L2(E).

This finally proves

h
1/2
E ‖[[∂nuh]]‖2L2(E) ≤ C2

ref

(
Cinv‖∇(uh − u)‖L2(ωE) + ‖hT f‖L2(ωE)

)
‖[[∂nuh]]‖L2(E)

and we may conclude this step by use of step 2 to dominate ‖hT f‖L2(ωE).

4. step. For T ∈ T and a Neumann edge E ∈ EN ∩ ET , it holds

h
1/2
E ‖φ− ∂nuh‖L2(E)

≤ C
(
‖h1/2E (φ− φE)‖L2(E) + ‖∇(u− uh)‖L2(T ) + ‖hT (f − fT )‖L2(T )

)
:

(4.52)

We consider again the edge bubble function bE ∈ P2(T ) and note that bE |∂T\E = 0. With v :=
(φE − ∂nuh)bE ∈ P2(T ), we proceed as in step 3 and obtain

C−2ref ‖φE − ∂nuh‖2L2(E) ≤ (φE − ∂nuh ; v)L2(E) = (φE − φ ; v)L2(E) + (φ− ∂nuh ; v)L2(E).

For the second term, we employ integration by parts to see

(φ− ∂nuh ; v)L2(E) = (∂n(u− uh) ; v)L2(∂T )

= (∇(u− uh) ; ∇v)L2(T ) − (f ; v)L2(T )

≤
(
Cinv‖∇(u− uh)‖L2(T ) + ‖hT f‖L2(T )

)
h
−1/2
E ‖φE − ∂nuh‖L2(E).

The first term is estimated by the Cauchy inequality directly

(φE − φ ; v)L2(E) ≤ ‖h1/2E (φE − φ)‖L2(E)‖h−1/2E v‖L2(E).
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There holds

‖v‖L2(E) = |(φE − ∂nuh)|E |‖bE‖L2(E) ≤ h
1/2
E |(φE − ∂nuh)|E | = ‖φE − ∂nuh‖L2(E).

Altogether, we thus have shown

h
1/2
E ‖φE − ∂nuh‖2L2(E)

≤ C2
ref

(
Cinv‖∇(u− uh)‖L2(T ) + ‖hT f‖L2(T ) + ‖h1/2E (φE − φ)‖L2(E)

)
‖φE − ∂nuh‖L2(E).

Here, ‖hT f‖L2(T ) is estimated by step 2, and φE on the left-hand side is replaced by φ with the
help of the triangle inequality. �

Exercise 30. Prove that fT in Theorem 4.13 can be replaced by an arbitrary T -elementwise
polynomial fT ∈ Pm(T ). The constant C > 0 in (4.46)–(4.47) then additionally depends on
the polynomial degree m ∈ N0. ✷

Remark. With the help of a so-called extension operator that extends a polynomial p : E → R to
a polynomial Fextp : T → R, one can show that φE in Theorem 4.13 can be replaced by an arbitrary
EN -edgewise polynomial (with respect to the arclength). ✷

Actually, the the volume residual contribution ‖hT f‖L2(Ω) = O(h) to η can be improved. This
is done in the following exercise, where this term is replaced by some higher-order term O(h2).

Exercise 31. Let Ωz = supp(ζz) denote the node patch of z ∈ K. For f ∈ L2(Ω), let
fz := |Ωz|−1

∫
Ωz
f dx denote the corresponding integral mean. Prove the following claims:

(i) For all inner nodes z ∈ K\Γ, it holds
∫

Ωz

ffzζz dx ≤ C
( ∑

E∈EΩ
z∈E

‖[[∂nuh]]‖2L2(E)

)1/2
‖h−1/2T fz‖L2(Ωz).

(ii) For all inner nodes z ∈ K\Γ and elements T ∈ T with z ∈ T , it holds

C−1 ‖hT f‖2L2(T ) ≤ ‖hT (f − fz)‖2L2(Ωz)
+

∑

E∈EΩ
z∈E

‖h1/2E [[∂nuh]]‖2L2(E).

(iii) Derive the equivalence

C−1η2 ≤ η̃ 2 :=‖h1/2E [[∂nuh]]‖2L2(EΩ) + ‖h1/2E (φ− ∂nuh)‖2L2(EN )

+
∑

z∈K\Ω

‖hT (f − fz)‖2L2(Ωz)
≤ C η2.

(iv) Conclude that the improved error estimator η̃ is reliable and efficient.
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(v) In what sense is the error estimator η̃ improved when compared to η.

The constant C > 0 in (i)–(iii) depends only on γ-shape regularity of T . ✷

The following Matlab code computes the vector of the element-based refinement indicators ηT
from (4.40). The integral

h2T ‖f‖2L2(T ) = h2T

∫

T
f2 dx ≈ h2T |T | f(sT )2 ≃ |T |2 f(sT )2

is computed by 1-point quadrature associated with the center of mass sT of T . The integral

hT ‖φ− ∂nuh‖2L2(∂T∩ΓN ) =
∑

E∈ET∩EN

hT

∫

E
(φ− ∂nuh)

2 ds

≈
∑

E∈ET∩EN

hThE
(
φ(mE)− (∂nuh)|E

)2

≃ |T |
∑

E∈ET∩EN

(
φ(mE)− (∂nuh)|E

)2

is computed edge-wise by midpoint quadrature.

1 function etaR = computeEtaR(x,coordinates,elements,f,dirichlet,neumann,phi)

2

3 % ETAR = COMPUTEETAR(X,COORDINATES,ELEMENTS,F,DIRICHLET,NEUMANN,PHI)

4 % computes the element-based refinement indicators associated with

5 % the residual-based error estimator. ETAR is a column vector, where

6 % ETAR(j)^2 = |Tj| * || f ||_{L^2(Tj)}^2

7 % + |Tj|^{1/2} * || jump(\partial_n u_h) ||_{L^2(\partial Tj \cap \Omega)}^2

8 % + |Tj|^{1/2} * || \phi - \partial_n u_h ||_{L^2(\partial Tj\cap\Gamma_N)}^2

9 % The exact integrals involving F and PHI\lastmodified{11.05.2009}

10 are integrated by midpoint

11 % quadrature.

12

13 % (c) 2007,2008 by Dirk Praetorius, last modified 08.01.2008

14 % dirk.praetorius@tuwien.ac.at - http://www.asc.tuwien.ac.at/~dirk

15

16 M = size(elements,1);

17 N = size(coordinates,1);

18

19 etaR = zeros(M,1);

20 int = sparse(N,N);

21

22 %*** Compute normal derivatives \partial_nT(uh) on all edges

23 for j = 1:M

24 nodes = elements(j,:);

25 B = [1 1 1 ; coordinates(nodes,:)’];
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26 G = B \ [0 0 ; 1 0 ; 0 1];

27 grad = G’*x(nodes); % gradient \nabla u_h on element T_j

28 for k = 1:3

29 node1 = nodes(k);

30 node2 = nodes(mod(k,3)+1);

31 normal = [1 -1]*coordinates([node1,node2],:);

32 normal = normal*[0 1;-1 0] / norm(normal);

33 int(node1,node2) = normal*grad;

34 end

35 end

36

37 %*** Delete data in case of Dirichlet edges

38 for j = 1:size(dirichlet,1)

39 nodes = dirichlet(j,:);

40 int(nodes(1),nodes(2)) = 0;

41 end

42

43 %*** Evaluate exact Neumann data on Neumann edges

44 for j = 1:size(neumann,1)

45 nodes = neumann(j,:);

46 m = [1 1]*coordinates(nodes,:)/2;

47 int(nodes(2),nodes(1)) = -phi(m);

48 end

49

50 %*** Compute residual-based refinement indicators

51 for j = 1:M

52 nodes = elements(j,:);

53 %*** Compute volume contribution by midpoint quadrature

54 sizeT = det([1 1 1 ; coordinates(nodes,:)’])/2;

55 s = [1 1 1]*coordinates(nodes,:)/3;

56 etaR(j) = sizeT^2*f(s)^2;

57 %*** Add edge contributions

58 for k = 1:3

59 node1 = nodes(k);

60 node2 = nodes(mod(k,3)+1);

61 hE = norm([1 -1]*coordinates([node1,node2],:));

62 etaR(j) = etaR(j) + sizeT*(int(node1,node2)+int(node2,node1))^2;

63 end

64 end

65 etaR = sqrt(etaR);
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Exercise 32. Consider the homogenous Dirichlet problems

−∆u = 1 in Ω,

u = 0 on Γ = ∂Ω,

with Ω being either the square Ω = (−1, 1)2 or the L-shaped domain Ω = (−1, 1)2\[0, 1]2.
Plot error and error estimator over the number of elements. How can one use the plot to see
whether an error estimator is reliable and/or efficient? ✷

Exercise 33. Note that the computational time of the function computeEtaR grows quadrat-
ically with the number M = #T of elements. This is due to the successive assembly of the
sparse matrix int. Improve the implementation so that one observes real linear complexity. ✷

Exercise 34. For the computation of the residual-based refinement indicators ηT , the given
Matlab codes approximates the exact data f and φ for the terms

‖hT f‖L2(T ) and ‖h1/2E (φ− ∂nuh)‖L2(E) for T ∈ T resp. E ∈ EN

by f |T ≈ f(sT ) and φ|E ≈ φ(mE). Here, sT and mE denote the center of mass of T and the
midpoint of E, respectively. Formally, this leads to an approximation η̃R of ηR. Prove that,
for f ∈ H2(T ) and φ ∈ C2(EN ), there holds

|ηR − η̃R| ≤ C
(
‖h2T∇f‖H1(T ) + ‖h3/2E φ′‖C1(EN )

)

with a constant C > 0 that only depends on σ(T ). Consequently, the computed estimator η̃R
is, in fact, reliable and efficient up to terms of higher order. ✷

4.4 Adaptive Mesh-Refining Algorithm

Usually, a posteriori error estimates are not only used to estimate the (unknown) error ‖∇(u −
uh)‖L2(Ω) but even to steer the local mesh-refinement. Let

η :=
( ∑

T∈T

η(T )2
)1/2

be an a posteriori error estimator, where the quantities η(T ) := ηT reflect —at least heuristically—
the (unknown) local error ‖∇(u − uh)‖L2(T ) for all T ∈ T . We then aim to refine only the ele-
ments T ∈ T , where η(T ) is large. Therefore, the quantities η(T ) are usually called refinement
indicators (or error indicators). To state our version of an adaptive algorithm, we introduce some
additional notation which will be used from now on.

• the index ℓ ∈ N0 denotes the step of the adaptive algorithm,

• Tℓ is the mesh in the ℓ-th step of the adaptive algorithm.
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• Nℓ and Eℓ denote the associated sets of nodes and edges, respectively.

• Uℓ ∈ Xℓ := S1
D(Tℓ) denotes the Galerkin solution in the ℓ-th step.

• hℓ ∈ P0(Tℓ), hℓ|T := diam(T ) is the local mesh-side function.

With this notation, one common strategy is the following: Let θ ∈ (0, 1) be the parameter for the
adaptive algorithm.

Algorithm 4.14 (Adaptive Mesh-Refinement). Input: Initial triangulation T0, toler-
ance τ > 0, adaptivity parameter θ ∈ (0, 1), counter ℓ := 0.

(i) Compute discrete solution Uℓ.

(ii) Compute refinement indicators ηℓ(T ) and error estimator ηℓ =
(∑

T∈Tℓ
ηℓ(T )

2
)1/2

.

(iii) Stop computation provided that ηℓ ≤ τ

(iv) Choose the minimal set Mℓ ⊆ Tℓ of marked elements such that

θ η2ℓ = θ
∑

T∈Tℓ

ηℓ(T )
2 ≤

∑

T∈Mℓ

ηℓ(T )
2. (4.53)

(v) Generate a new regular mesh Tℓ+1, where at least all marked elements have been refined.

(vi) Update ℓ 7→ ℓ+ 1 and goto (i).

Output: Finite sequence of discrete solutions Uℓ and corresponding error estimators ηℓ.

Remark. Clearly, the stopping criterion (iii) is only meaningful if ηℓ is reliable and if the reliability
constant in ‖∇(u−Uℓ)‖L2(Ω) ≤ Crel ηℓ is known. In practice, runtime and storage requirements are
the limiting quantities for a numerical simulation. Usually, one thus uses rather a maximal runtime
or a maximal storage requirement, e.g., the maximal number of elements, as a stopping criterion.
Adaptivity is then used to obtain an —in some sense— optimal approximation with respect to
these side constraints. ✷

Remark. The marking criterion (4.53) was introduced by Dörfler (1996). It will be crucial to
prove convergence of Uℓ to the exact solution u ∈ H1

D(Ω) of (4.1). Note that the choice θ → 0
in (4.53) leads to highly adapted meshes, whereas θ → 1 corresponds to (almost) uniform mesh-
refinement. However, for small θ, only a few elements are refined per step. This may result in too
many steps in the sense that usually the assembly of the Galerkin data is the most time consuming
part of the algorithm. In practice, a good compromise between sufficient mesh-adaption and as few
steps in the loop as possible appears to be θ ≈ 0.25. ✷

Remark. In the beginning of the analysis of adaptive FEM, Babuška proposed the following
marking criterion: An element T ∈ T is marked for refinement if and only if

ηT ≥ θ max
{
ηT ′

∣∣T ′ ∈ T
}
, (4.54)
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which is called bulk criterion in the literature. Convergence (but not optimality) of this version
of adaptive FEM was proven by Morin, Siebert & Veeser (2008). Very recently, Diening,
Kreuzer & Stevenson (2014) proved the so-called instance optimality of the adaptive algorithm
for some extended bulk criterion. ✷

Before we comment on the local mesh-refinement in step (v) of Algorithm 4.14, we give a simple
Matlab realization of Algorithm 4.14. We use the number of elements M := #T and stop the
adaptive algorithm when M ≥Mmax.

1 function [x,M,energy,etaR] ...

2 = solveLaplaceAdaptively(coordinates,elements,f,dirichlet,neumann,phi,theta,Mmax)

3

4 ell = 1;

5 while 1

6 M(ell) = size(elements,1);

7

8 %*** Compute discrete solution and cooresponding energy

9 [x,energy(ell)] = solveLaplace(coordinates,elements,f,dirichlet,neumann,phi);

10

11 %*** Compute refinement indicators and error estimator

12 indicators = computeEtaR(x,coordinates,elements,f,dirichlet,neumann,phi);

13 etaR(ell) = norm(indicators);

14

15 %*** Stopping criterion

16 if M(ell) >= Mmax

17 break

18 end

19

20 %*** Use Doerfler marking to mark elements for refinement

21 [indicators,idx] = sort(indicators.^2,’descend’);

22 sumeta = cumsum(indicators);

23 m = find(theta*sumeta(end)<=sumeta,1);

24 marked = idx(1:m);

25

26 %*** Generate a new mesh by RGB-refinement

27 [coordinates,elements,dirichlet,neumann] = ...

28 rgbrefine(coordinates,elements,dirichlet,neumann,marked);

29

30 %*** Update counter

31 ell = ell + 1;

32 end

4.4.1 Red-Green-Blue Refinement

It now remains to discuss the mesh-refinement. Recall that all error estimates are affected by the

shape regularity σ(Tℓ) in the sense that the involved constants become unbounded for σ(Tℓ) ℓ→∞−−−→
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∞. Therefore, the mesh-refinement has to take care of the interior angles of the elements T ∈ Tℓ
since σ(Tℓ) tends to infinity if and only if the minimal interior angle of the triangulation tends to
zero. We follow the so-called red-green-blue strategy (or RGB-refinement): This refinement
strategy is based on edge-refinement. First, we thus use the following marking rule:

• If an element T ∈ Tℓ is marked for refinement, we mark all edges E ∈ ET for refinement.

We now proceed recursively as follows:

• For each element T ∈ Tℓ, we mark its longest edge E ∈ ET for refinement provided that ET
contains a marked edge.

Each marked edge will be halved, i.e., the midpoint mE of a marked edge belongs to the new set
Kℓ+1 of nodes. Finally, we have the following refinement rules, for all T ∈ Tℓ:

• If no edge in ET is marked for refinement, T is not refined, i.e., T ∈ Tℓ+1.

• If all edges in ET are marked, we use a red-refinement of T , i.e., T is refined uniformly into
four similar triangles, cf. Figure 4.3.

• If one edge in ET is marked (and hence the longest edge), we use a green-refinement, i.e.,
T is refined into two triangles, cf. Figure 4.4.

• If two edges in ET are marked — one of which is, according to the marking rule, the longest
edge of T —, we use a blue-refinement, i.e., T is split into three triangles, cf. Figure 4.5.

In Figure 4.6, we visualize a simple example for an RGB-refined mesh.

Figure 4.3. Red-refinement: If all edges of a triangle T ∈ Tℓ are marked (left), T is refined into
four similar triangles T1, T2, T3, T4 ∈ Tℓ+1 (right).

Figure 4.4. Green-refinement: If only the longest edge of a triangle T ∈ Tℓ is marked (left), T
is refined into two new triangles T1, T2 ∈ Tℓ+1 (right).

We state the following elementary but important theorem without a proof.
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Figure 4.5. Blue-refinement: If besides the longest edge of a triangle T ∈ Tℓ just one other edge
is marked for refinement (left), T is refined into three new triangles T1, T2, T3 ∈ Tℓ+1 (right).

Figure 4.6. The left plot shows an initial mesh Tℓ with marked elements coloured in grey. The
right plot shows the mesh Tℓ+1 obtained by RGB-refinement of the marked elements. The grey
elements are obtained by uniform refinement of a marked element T ∈ T0.

Theorem 4.15. Let T0 be a regular triangulation such that ε > 0 is a lower bound for the
smallest angle of a triangle T ∈ T0. Let Tℓ be a sequence of meshes, where Tℓ is obtained
by RGB-refinement of the mesh Tℓ−1 and where the set Mℓ−1 ⊆ Tℓ−1 of marked elements is
arbitrary. Then, Tℓ is regular and the smallest angle of all triangles T ∈ Tℓ is bounded from
below by ε/2. In particular, there holds

sup
ℓ∈N

σ(Tℓ) <∞, (4.55)

which is an equivalent formulation for the fact that the smallest angles of the triangulations Tℓ
do not tend to zero. �

The following Matlab code is an implementation of the RGB mesh-refinement strategy, which
additionally takes care of the specification of the domain boundary.

1 function [coordinates,newelements,varargout] ...
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2 = rgbrefine(coordinates,elements,varargin)

3

4 % [COORDINATES,ELEMENTS [,DIRICHLET] [,ROBIN] [,NEUMANN] ]

5 % = RGBREFINE(COORDINATES,ELEMENTS [,DIRICHLET] [,ROBIN] [,NEUMANN], MARKED]

6 % refines the MARKED elements of a regular triangulation by a

7 % uniform refinement (red refinement). A green-blue closure leads

8 % to a new regular triangulation.

9 %

10 % vector MARKED contains the indices of all elements that will be refined

11 %

12 % Optionally, one can provide the specification of boundary conditions,

13 % e.g., Dirichlet, Robin, and/or Neumann boundaries. Then, the refined

14 % boundary conditions are returned in the same order

15

16 % (c) 2007 by Dirk Praetorius, last modified 21.11.2007

17 % dirk.praetorius@tuwien.ac.at - http://www.math.tuwien.ac.at/~dirk

18

19 M = size(elements,1);

20 N = size(coordinates,1);

21 markedelements = varargin{end};

22

23 %*** Sort elements such that the longest edge is always the first edge,

24 %*** i.e. we sort the entries in each row elements(j,:) accordingly.

25

26 for j = 1:M

27 [hmax,idx] = max(sum((coordinates(elements(j,[2,3,1]),:)- ...

28 coordinates(elements(j,[1,2,3]),:)).^2’));

29 elements(j,:) = elements(j,[idx,mod(idx,3)+1,mod(idx+1,3)+1]);

30 end

31

32 %*** Introduce numbering of edges, stored in a sparse matrix EDGES:

33 %*** - EDGES(J,K) \neq 0 if and only if nodes J and K connected by edge,

34 %*** - EDGES(J,K) \neq EDGES(K,J) if and only if edge on boundary.

35

36 edges = sparse(N,N);

37 noedges = 0; % number of edges

38 for j = 1:M

39 for k = 1:3

40 a = [elements(j,k),elements(j,mod(k,3)+1)];

41 if edges(a(2),a(1))

42 edges(a(1),a(2)) = edges(a(2),a(1));

43 else

44 noedges = noedges+1;

45 edges(a(1),a(2)) = noedges;

46 end
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47 end

48 end

49

50 %*** Transfer marking of elements to marking of edges.

51 %*** If element(j) is marked, we mark all of its edges (red-refinement).

52 %*** - MARKEDEDGES(k) \neq 0 if and only if edge K will be refined.

53

54 element2edges = zeros(M,3);

55 for j = 1:M

56 element2edges(j,:) = diag(edges(elements(j,:),elements(j,[2,3,1])))’;

57 end

58 markededges = sparse(noedges,1);

59 markededges(element2edges(markedelements,:)) = ones(3*length(markedelements),1);

60

61 %*** Mark further edges according to green-blue closure:

62 %*** To ensure that the triangles do not degenerate, we always refine

63 %*** the longest edge, i.e. the first edge of an element.

64

65 edge2elements = sparse(N,N);

66 for j = 1:M

67 edge2elements(elements(j,:),elements(j,[2,3,1])) = ...

68 edge2elements(elements(j,:),elements(j,[2,3,1]))+j*eye(3,3);

69 k = j;

70 while k

71 I = element2edges(k,:);

72 if markededges(I(1))==1 | markededges(I(2:3))==[0;0]

73 k = 0;

74 else

75 markededges(I(1))=1;

76 k = edge2elements(elements(k,2),elements(k,1));

77 end

78 end

79 end

80

81 %*** For each marked edge, its midpoint becomes a new node.

82 %*** We store the number of the new nodes in MARKEDEDGES instead of 1.

83

84 idx = find(markededges);

85 markededges(idx) = N+1:N+length(idx);

86 for j = 1:nnz(markededges)

87 [a,b] = find(idx(j) == edges);

88 coordinates(markededges(idx(j)),:)=(coordinates(a(1),:)+coordinates(b(1),:))/2;

89 end

90

91 %*** Create new elements
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92

93 I = reshape(edges(size(edges,1)*(elements(:,[2,3,1])-1)+elements(:,[1,2,3])),M,3);

94

95 boundaryedges = nonzeros(tril(abs(edges-edges’)));

96 newelements = zeros(2*length(idx)-nnz(markededges(boundaryedges))+M,3);

97

98 counter = 0;

99 for j = 1:M

100 RefineEdge = find(markededges(I(j,:)));

101 newnodes=markededges(I(j,RefineEdge))’;

102 if size(RefineEdge,1)==3 % red refinement

103 new = [ newnodes([2,3,1]);

104 [elements(j,1) newnodes(1) newnodes(3)];

105 [newnodes(1) elements(j,2) newnodes(2)];

106 [newnodes(3) newnodes(2) elements(j,3)] ];

107 elseif size(RefineEdge,1)==2 % blue refinement

108 new = [ [newnodes(1), elements(j,RefineEdge(2)),newnodes(2)];

109 [elements(j,5-RefineEdge(2)), ...

110 elements(j,rem(5-RefineEdge(2),3)+1),newnodes(1)];

111 [elements(j,rem(RefineEdge(2),3)+1),newnodes(1),newnodes(2)] ];

112 elseif size(RefineEdge,1)==1 % green refinement

113 new = [ [elements(j,[2,3]),newnodes];

114 [elements(j,[3,1]),newnodes] ];

115 else % no refinement

116 new = elements(j,:);

117 end

118 newelements(counter+1:counter+size(new,1),:) = new;

119 counter = counter + size(new,1);

120 end

121

122 %*** Update boundary conditions

123

124 for j = 1:nargin-3

125 boundary = varargin{j};

126 if ~isempty(boundary)

127 counter = 0;

128 boundarynr = edges(size(edges,1)*(boundary(:,2)-1)+boundary(:,1));

129 for k = 1:size(boundary,1)

130 if markededges(boundarynr(k))

131 boundary = [ boundary(1:k-1+counter,:);

132 boundary(k+counter,1),markededges(boundarynr(k));

133 markededges(boundarynr(k)),boundary(k+counter,2);

134 boundary(k+1+counter:size(boundary,1),:) ];

135 counter = counter + 1;

136 end
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137 end

138 end

139 varargout(j) = {boundary};

140 end

4.5 Convergence of Adaptive FEM

In the following, we aim to show that Algorithm 4.14 creates a sequence Uℓ of discrete solutions
which converges to the exact solution u ∈ H := H1

D(Ω). The adaptive algorithm generates a
sequence Xℓ = S1

D(Tℓ) of finite dimensional nested subspaces of H, i.e., Xℓ $ Xℓ+1 for all ℓ ∈ N0,
since Tℓ+1 is some refinement of Tℓ. We first stress that the sequence Uℓ is always convergent to
some limit U∞ ∈ H. However, we even stress that one may in general expect that U∞ 6= u.

Exercise 35. Let Xℓ be nested subspaces of a Hilbert space H, i.e., Xℓ ⊆ Xℓ+1 for all ℓ ∈ N0.
Let 〈〈· ; ·〉〉 be an elliptic and continuous bilinear form on H with corresponding Galerkin
solutions Uℓ ∈ Xℓ. Prove that the limit U∞ := limℓ→∞Uℓ exists in H. Hint: Define X∞ as
the closure of

⋃∞
ℓ=0 Xℓ in H. Let U∞ ∈ X∞ be the corresponding Galerkin solution, and prove

that U∞ is the limit of the sequence Uℓ. ✷

Exercise 36. Let H = H1
D(Ω) and Xℓ = S1

D(Tℓ), where the regular initial mesh T0 is given
and where Tℓ is obtained iteratively by uniform refinement of Tℓ−1. Prove that X∞ = H for
the space X∞ from Exercise 35. ✷

The interpretation of the last exercises is the following: For uniform mesh-refinement, there
usually holds X∞ = H and thus u = U∞, i.e., we have convergence of the sequence of discrete
solutions Uℓ towards the unique solution u. However, adaptive mesh-refinement may lead to X∞ $
H. Consequently, the question arrises whether the adaptive algorithm guarantees U∞ = u or not.
This will be discussed in the following sections.

Throughout the subsequent section, we use the following notation, which is now collected for
the convenience of the reader:

• Uℓ ∈ Xℓ := S1
D(Tℓ) denotes the Galerkin solution.

• For T ∈ Tℓ and some V ∈ S1
D(Tℓ), ηℓ(T, V ) denotes the associated refinement indicator, e.g.,

ηℓ(T, V )2 = h2T ‖f‖2L2(T ) + hT ‖[[∂nV ]]‖2L2(∂T∩Ω) + hT ‖φ− ∂nV ‖2L2(∂T∩ΓN ). (4.56)

• For some subset M ⊆ Tℓ and V ∈ S1
D(Tℓ), let ηℓ(M, V ) :=

(∑
T∈M ηℓ(T, V )2

)1/2
.

• We abbreviate ηℓ(M) = ηℓ(M, Uℓ) and ηℓ = ηℓ(Tℓ).
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Note that in case of (4.56), ηℓ is the residual a posteriori error estimator discussed in Section 4.3.
We recall some technical terms, proven above for the residual error estimator ηℓ.

• ηℓ is reliable if

‖u− Uℓ‖H ≤ Crelηℓ. (4.57)

• ηℓ is efficient (up to oscillation terms which depend only on Tℓ), if

ηℓ ≤ Ceff

(
‖u− Uℓ‖H + oscℓ

)
, (4.58)

where oscℓ := oscℓ(Tℓ), oscℓ(M) :=
(∑

T∈M oscℓ(T )
2
)1/2

for M ⊆ Tℓ, and

oscℓ(T )
2 := h2T ‖f − fT ‖L2(T ) + hT ‖φ− φE‖2L2(∂T∩ΓN ). (4.59)

• The set Mℓ ⊆ Tℓ of marked elements is usually assumed to satisfy the Dörfler marking

θ ηℓ ≤ ηℓ(Mℓ) (4.60)

for some fixed parameter θ ∈ (0, 1).

Exercise 37. Prove that ‖u− Uℓ‖H as well as oscℓ are monotonously decreasing for ℓ → ∞.
Prove that in case of the residual-based indicators (4.56), there holds oscℓ(T ) ≤ ηℓ(T ) for all
T ∈ Tℓ, i.e., the error estimator dominates the oscillation terms. ✷

Figure 4.7. Bisec(5) guarantees the inner node property: Let T be marked for refinement (left)
and assume that the bottom edge is the reference edge. With five bisections, we pass the configu-
ration of bisec(3) in the middle and end up with an inner node (right).

The following convergence theorem is a result of Cascón, Kreuzer, Nochetto & Siebert
from 2008, where it is proven that the combined error quantity, which consists of error and error
estimator, has a contraction property. We stress two important observations:

• For their analysis, Cascón, Kreuzer, Nochetto, and Siebert re-define the mesh width

hT := |T |1/2 for T ∈ Tℓ, (4.61)

whereas we considered diam(T ) before. Note that, however, |T | ≤ diam(T )2 ≤ 2σ(T )|T |
so that both definition are equivalent for shape regular meshes, and we shall use the new
definition in what follows.
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• If T ∈ Tℓ is refined, each son T ′ ∈ Tℓ+1 satisfies at least |T ′| ≤ |T |/2, which now results in a
strict reduction hT ′ ≤ hT /

√
2 of the local mesh-width (which fails, in general, for the usual

definition hT = diam(T )). This observation is used in step 2 of the proof of the following
theorem.

We note that the analysis holds for general symmetric problems. For non-symmetric problems, the
correspoding result has been open until Feischl, Führer & Praetorius (2014).

Theorem 4.16 (Cascón, Kreuzer, Nochetto & Siebert ’08). Suppose that the set of
marked elements Mℓ satisfies the Dörfler marking for some fixed θ ∈ (0, 1). Then, there are
constants κ > 0 and q ∈ (0, 1) which depend only on θ and uniform γ-shape regularity of Tℓ for
all ℓ ∈ N0, such that

(
‖∇(u− Uℓ+1)‖2L2(Ω) + κ η2ℓ+1

)1/2 ≤ q
(
‖∇(u− Uℓ)‖2L2(Ω) + κ η2ℓ

)1/2
for all ℓ ∈ N. (4.62)

In particular, this implies convergence lim
ℓ→∞

‖∇(u− Uℓ)‖L2(Ω) = 0 = lim
ℓ→∞

ηℓ.

Proof. 1. step. There holds the following quasi-triangle inequality for the error estimator

ηℓ(V ) ≤ ηℓ(W ) + C∆ ‖∇(V −W )‖L2(Ω) for all V,W ∈ S1
D(Tℓ) (4.63)

with some constant C∆ > 0 which depends only on σ(Tℓ): From the triangle inequalities in ℓ2 and
L2, we infer

ηℓ(V ) =
[
‖hℓf‖2L2(Ω) +

∑

T∈Tℓ

hT
(
‖[[∂nV ]]‖2L2(∂T∩Ω) + ‖φ− ∂nV ‖2L2(∂T∩ΓN )

)]1/2

≤
[
‖hℓf‖2L2(Ω) +

∑

T∈Tℓ

hT
(
‖[[∂nW ]]‖2L2(∂T∩Ω) + ‖φ− ∂nW‖2L2(∂T∩ΓN )

)]1/2

+
[ ∑

T∈Tℓ

hT
(
‖[[∂n(V −W )]]‖2L2(∂T∩Ω) + ‖∂n(V −W )‖2L2(∂T∩ΓN )

)]1/2
.

For fixed T ∈ Tℓ and E ∈ ET , a scaling argument proves

hT
(
‖[[∂n(V −W )]]‖2L2(E∩Ω) + ‖∂n(V −W )‖2L2(E∩ΓN )

)
. ‖∇(V −W )‖2L2(ωE),

where the constant depends only on σ(Tℓ). Consequently, we end up with (4.63).

2. step. There holds an estimator reduction in the sense that there is a constant ̺ ∈ (0, 1)
with

η2ℓ+1 ≤ (1 + δ)̺ η2ℓ + Cδ‖∇(Uℓ+1 − Uℓ)‖2L2(Ω) for all δ > 0, (4.64)

where Cδ > 0 depends only on δ and C∆ > 0. The constant ̺ depends only on θ and the reduction
of the mesh-side on marked elements: Let Ω∗ :=

⋃
T∈Mℓ

T denote the subdomain of Ω, where the

elements are marked. Recall that hT ′ ≤ hT /
√
2 for all sons T ′ ∈ Tℓ+1 of a marked element T ∈ Mℓ.

The crucial step is to observe that the error indicators

ηℓ(T, V )2 = h2T ‖f‖2L2(T ) + hT ‖[[∂nV ]]‖2L2(∂T∩Ω) + hT ‖φ− ∂nV ‖2L2(∂T∩ΓN ).
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for hT = |T |1/2 lead to

ηℓ+1(Uℓ)
2 =

∑

T ′∈Tℓ+1
T ′⊆Ω∗

ηℓ+1(T
′, Uℓ)

2 +
∑

T ′∈Tℓ+1

T ′⊆Ω\Ω∗

ηℓ+1(T
′, Uℓ)

2

≤ 1√
2

∑

T∈Tℓ
T⊆Ω∗

ηℓ(T,Uℓ)
2 +

∑

T∈Tℓ
T⊆Ω\Ω∗

ηℓ(T,Uℓ)
2

= 2−1/2 ηℓ(Mℓ)
2 + ηℓ(Tℓ\Mℓ)

2

= (2−1/2 − 1)ηℓ(Mℓ)
2 + η2ℓ .

By use of the Dörfler marking θη2ℓ ≤ ηℓ(Mℓ)
2, we thus obtain

η2ℓ+1(Uℓ) ≤ η2ℓ − (1− 2−1/2)ηℓ(Mℓ)
2 ≤ ̺ η2ℓ with ̺ :=

(
1− θ(1− 2−1/2)

)
.

Now, Young’s inequality and step 1 conclude

η2ℓ+1 ≤ (1 + δ)ηℓ+1(Uℓ)
2 + (1 + δ−1)C2

∆ ‖∇(Uℓ+1 − Uℓ)‖2L2(Ω)

≤ (1 + δ)̺ η2ℓ + (1 + δ−1)C2
∆ ‖∇(Uℓ+1 − Uℓ)‖2L2(Ω).

3. step. Proof of contraction property (4.62): Let κ, δ, β > 0 be constants which are fixed later.
Let ̺ ∈ (0, 1) be the given constant from step 2. We recall the Galerkin orthogonality

‖∇(u− Uℓ)‖2L2(Ω) = ‖∇(u− Uℓ+1)‖2L2(Ω) + ‖∇(Uℓ+1 − Uℓ)‖2L2(Ω)

This and the estimator reduction imply

‖∇(u− Uℓ+1)‖2L2(Ω) + κ η2ℓ+1 = ‖∇(u− Uℓ)‖2L2(Ω) − ‖∇(Uℓ+1 − Uℓ)‖2L2(Ω) + κ η2ℓ+1

≤ ‖∇(u− Uℓ)‖2L2(Ω) + (κCδ − 1) ‖∇(Uℓ+1 − Uℓ)‖2L2(Ω) + κ(1 + δ)̺ η2ℓ .

Provided that κCδ ≤ 1, we infer

‖∇(u− Uℓ+1)‖2L2(Ω) + κ η2ℓ+1 ≤ ‖∇(u− Uℓ)‖2L2(Ω) + κ(1 + δ)̺ η2ℓ

= ‖∇(u− Uℓ)‖2L2(Ω) − κβ η2ℓ + κ
(
(1 + δ)̺ + β

)
η2ℓ .

Reliability ‖∇(u− Uℓ)‖L2(Ω) ≤ Crelηℓ finally leads to

‖∇(u− Uℓ+1)‖2L2(Ω) + κ η2ℓ+1 ≤ (1− κβC−2rel )‖∇(u− Uℓ)‖2L2(Ω) + κ
(
(1 + δ)̺+ β

)
η2ℓ

≤ max
{
1− κβC−2rel , (1 + δ)̺ + β

} (
‖∇(u− Uℓ)‖2L2(Ω) + κ η2ℓ

)
.

It remains to choose the constants κ, δ, β so that q2 := max
{
1− κβC−2rel , (1 + δ)̺+ β

}
∈ (0, 1):

• Choose δ > 0 such that (1 + δ)̺ < 1.

• Choose κ > 0 such that κCδ ≤ 1.

• Choose β > 0 such that (1 + δ)κ+ β < 1.
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This implies q ∈ (0, 1) and concludes the proof. �

Remark. We again collect the main arguments of the preceeding proof, namely a certain quasi-
triangle inequality of the estimator (4.63) and a strict reduction ηℓ+1(sons(Mℓ), Uℓ) ≤ κ ηℓ(Mℓ, Uℓ)
with some κ ∈ (0, 1) based on the strict reduction of the local mesh-width for marked elements.
Besides this, only Galerkin orthogonality and Dörfler marking are used. Therefore, the proof works
for a quite general class of symmetric problems and a variety of error estimators. The original work
of Cascón, Kreuzer, Nochetto & Siebert (2008) considers linear second order symmetric and
elliptic problems in divergence form and H1-conforming finite element spaces with fixed polynomial
degree. Finally, we stress that the proof also works for higher dimensions d ≥ 2, where hT = |T |−1/d.
For 2D, the usual definition hT := diam(T ) is sufficient if marked elements are refined, e.g., by
red-refinement or bisec(3), since then all edges are bisected. ✷

Exercise 38. Prove the following variants of Young’s inequality, for all a, b ∈ R and δ > 0,
• ab ≤ a2

2δ +
δb2

2 .
• (a+ b)2 ≤ (1 + δ−1)a2 + (1 + δ)b2. ✷

Exercise 39. Prove that the estimator reduction (4.64) with Cδ = (1 + δ−1)C2
∆ is equivalent

to ηℓ+1 ≤ ̺ ηℓ + C∆‖∇(Uℓ+1 − Uℓ)‖L2(Ω). ✷

Exercise 40. Suppose that an error estimator ηℓ satisfies the estimator reduction (4.64) and
that the discrete spaces are nested, i.e., S1

D(Tℓ) ⊆ S1
D(Tℓ+1) for all ℓ ∈ N0. Prove that there

holds limℓ→∞ ηℓ = 0. Hint: Use that there always holds convergence Uℓ
ℓ→∞−−−→ U∞ so that

‖∇(Uℓ+1 − Uℓ)‖L2(Ω)
ℓ→∞−−−→ 0, cf. Exercise 35. ✷

Exercise 41. Prove that adaptive FEM based on the residual error estimator with the usual
definition of hT := diam(T ) instead of (4.61) leads to R-linear convergence ηℓ+k ≤ C qk ηℓ for
all k, ℓ ∈ N0. The constants C > 0 and 0 < q < 1 depend only on θ and the uniform γ-shape
regularity of Tℓ for all ℓ ∈ N0. Hint: Use Theorem 4.16 and consider the Dörfler marking. ✷
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Chapter 5

A Priori Analysis II

5.1 FEM with Data Approximation

Now that we have realized that the P1-FEM is of order O(h), we need to show that the quadrature
rules used for our Matlab implementation are sufficiently accurate. Recall that we are approxi-
mating the right-hand side of the exact P1-FEM

F (v) :=

∫

Ω
fv dx+

∫

ΓN

φv ds for v ∈ H1(Ω) (5.1)

by

Fh(vh) :=
∑

T∈T

|T |f(sT )vh(sT ) +
∑

E∈EN

hEφ(mE)vh(mE) for vh ∈ S1(T ), (5.2)

where sT denotes the center of mass of an element T ∈ T and where mE denotes the midpoint of
a Neumann edge E ∈ EN . Therefore, our Matlab code realizes a perturbed P1-FEM and we need
to study the convergence of this perturbed scheme.

5.1.1 First Strang Lemma

In this section, we go back to the abstract formulation of Galerkin schemes: Let H be a real Hilbert
space with norm ‖·‖H . Let 〈〈· ; ·〉〉 be a bilinear form which is assumed to be elliptic and continuous,
i.e., it holds that

α ‖v‖2H ≤ 〈〈v ; v〉〉 as well as 〈〈v ; w〉〉 ≤ β‖v‖H‖w‖H for all v,w ∈ H. (5.3)

Let F ∈ H∗ be a given right-hand side. Then, the Lax-Milgram lemma applies and yields the
existence and uniqueness of the solution u ∈ H of

〈〈u ; ·〉〉 = F ∈ H∗. (5.4)

For a discretization parameter h > 0, let Xh be a finite dimensional subspace of H. It is an
important property of a Galerkin scheme that it is stable with respect to certain perturbations of
the scalar product 〈〈· ; ·〉〉 or the right-hand side F . — For the interpretation, recall that usually the
right-hand side F ∈ H∗ as well as the scalar product 〈〈· ; ·〉〉 involve integrals, which are computed
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numerically by quadrature rules. For a fixed discrete space Xh, this leads to perturbations Fh ∈ X∗h
and 〈〈· ; ·〉〉h of F and 〈〈· ; ·〉〉, respectively. In particular, this gives rise to additional consistency
errors

‖F − Fh‖X∗
h

and sup
vh∈Xh\{0}

‖〈〈vh ; ·〉〉 − 〈〈vh ; ·〉〉h‖X∗
h

‖vh‖H
.

In practice, the best approximation error (or discretization error) behaves like

min
vh∈Xh

‖u− vh‖H = O(hα) for h→ 0,

where the convergence order α > 0 usually depends on the regularity of the exact solution u.
Then, the Céa lemma proves that

‖u−Ghu‖H = O(hα).

The following result due to Strang shows that the consistency errors should be at least of the
same order, i.e., one needs a sufficiently large order for the quadrature rules. Then, the perturbed
Galerkin scheme

〈〈uh ; vh〉〉h = Fh(vh) for all vh ∈ Xh (5.5)

still allows for a unique solution uh ∈ Xh. Moreover the approximation error still satisfies

‖u− uh‖H = O(hα).

However, the consequence of Strang’s lemma even works the other way around: You should avoid
to compute integrals exactly (or with high accuracy quadrature rules) since this is usually com-
putationally expensive and since this expense does not pay in the sense of an increased order
of convergence. Finally, we note that analytic computation of integrals via antiderivatives, i.e.,∫ b
a f dx = F (b) − F (a) for the simple 1D case, necessarily leads to cancellation for small mesh-
sizes. These are, however, avoided for numerical integration via Gaussian quadrature rules, since
the Gaussian quadrature weights are all positive. In explicit terms, this implies that approximate
computation will be numerically more accurate than analytic computation, if the quadrature rules
are deliberately chosen.

Proposition 5.1 (First Strang Lemma). Assume that 〈〈· ; ·〉〉h is a bilinear form on Xh

and that Fh : Xh → R is linear. Then, there holds the following:
(i) Assume convergence of 〈〈· ; ·〉〉h to 〈〈· ; ·〉〉, i.e.,

lim
h→0

Eh = 0 with Eh := sup
vh,wh∈Xh\{0}

|〈〈vh ; wh〉〉 − 〈〈vh ; wh〉〉h|
‖vh‖H‖wh‖H

. (5.6)

Then, the bilinear forms are uniformly elliptic for small h, i.e.,

∃α0 > 0∃h0 > 0∀h ∈ (0, h0)∀vh ∈ Xh α0‖vh‖2H ≤ 〈〈vh ; vh〉〉h. (5.7)
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In particular, there exist unique uh ∈ Xh with 〈〈uh ; ·〉〉h = Fh ∈ X∗h for sufficiently small h > 0.
(ii) Provided (5.7), there holds the Céa type estimate

C−1 ‖u− uh‖H ≤ inf
vh∈Xh

(
‖u− vh‖H + ‖〈〈vh ; ·〉〉 − 〈〈vh ; ·〉〉h‖X∗

h

)
+ ‖F − Fh‖X∗

h

≤ (1 +Eh) min
vh∈Xh

‖u− vh‖H + Eh ‖u‖H + ‖F − Fh‖X∗
h

(5.8)

with u being the exact solution of (5.4). The constant C > 0 depends only on 〈〈· ; ·〉〉.

Proof. Let 0 < ε < α and h0 > 0 such that

∀h ∈ (0, h0) sup
vh∈Xh\{0}

|〈〈vh ; vh〉〉 − 〈〈vh ; vh〉〉h|
‖vh‖2H

≤ ε.

Then, α‖vh‖2H ≤ 〈〈vh ; vh〉〉 ≤ 〈〈vh ; vh〉〉h + |〈〈vh ; vh〉〉 − 〈〈vh ; vh〉〉h| ≤ 〈〈vh ; vh〉〉h + ε‖vh‖2H , whence

(α− ε) ‖vh‖2H ≤ 〈〈vh ; vh〉〉h,

i.e., 〈〈· ; ·〉〉h is an elliptic bilinear form on Xh for h < h0. This concludes the proof of (i) with
α0 := α− ε > 0. To prove (ii), let vh ∈ Xh be arbitrary. Then,

α0 ‖vh − uh‖2H ≤ 〈〈vh − uh ; vh − uh〉〉h = 〈〈vh ; vh − uh〉〉h − Fh(vh − uh).

Together with

〈〈u− vh ; vh − uh〉〉 = F (vh − uh)− 〈〈vh ; vh − uh〉〉,

we obtain that

α0 ‖vh − uh‖2H ≤
[
F (vh − uh)− Fh(vh − uh)

]
+

[
〈〈vh ; vh − uh〉〉h − 〈〈vh ; vh − uh〉〉

]

− 〈〈u− vh ; vh − uh〉〉
≤ ‖vh − uh‖H

[
‖F − Fh‖X∗

h
+ ‖〈〈vh ; ·〉〉h − 〈〈vh ; ·〉〉‖X∗

h
+ β ‖u− vh‖H

]
.

Finally, the combination with a triangle inequality yields that

‖u− uh‖H ≤ ‖u− vh‖H + ‖vh − uh‖H
≤ C

[
‖Fh − F‖X∗

h
+ ‖〈〈vh ; ·〉〉 − 〈〈vh ; ·〉〉h‖X∗

h
+ ‖u− vh‖H

]

for any vh ∈ Xh with C = 1 + β/α0. This proves the first estimate in (5.8). To see the second
estimate, note that

‖〈〈vh ; ·〉〉 − 〈〈vh ; ·〉〉h‖X∗
h
≤ Eh ‖vh‖H ≤ Eh ‖u‖H + Eh ‖u− vh‖H .

This concludes the proof. �

Under the assumptions of the Strang lemma, one can even show convergence of the perturbed
Galerkin scheme.
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Exercise 42. Assume that 〈〈· ; ·〉〉h is a symmetric bilinear form on X∗h and that Fh ∈ X∗h. We
assume convergence of the data in the sense that

lim
h→0

Eh = 0 = lim
h→0

‖F − Fh‖X∗
h

with Eh := sup
vh,wh∈Xh\{0}

|〈〈vh ; wh〉〉 − 〈〈vh ; wh〉〉h|
‖vh‖H‖wh‖H

. (5.9)

For sufficiently small h > 0, let uh ∈ Xh be the unique solutions of the perturbed Galerkin
scheme (5.5). Under the approximation assumption

lim
h→0

min
vh∈Xh

‖v − vh‖H = 0 for all v ∈ D (5.10)

for some dense subspace D of H, there holds convergence

lim
h→0

‖u− uh‖H = 0

with u being the exact solution of (5.4). ✷

5.1.2 Approximation of Volume Forces

For our Matlab implementation of P1-FEM, we compute the bilinear form 〈〈vh ; wh〉〉 analytically
and perturb only the right-hand side. Let F and Fh be given by (5.1)–(5.2), respectively. According
to the first Strang lemma 5.1, we only need to show that

‖F − Fh‖S1(T )∗ = O(h)

to guarantee that the perturbed P1-FEM is also of order O(h). We consider the two contributions
of the right-hand side separately.

Proposition 5.2. Let f ∈ H2(T ) and F (v) :=
∫
Ω fv dx for v ∈ H1(Ω). Let Fh(vh) :=∑

T∈T |T |f(sT )vh(sT ) for vh ∈ S1(T ), where sT ∈ R2 denotes the center of mass of an element
T ∈ T . Then, it holds that

‖F − Fh‖S1(T )∗ ≤ C ‖h2∇f‖H1(T ), (5.11)

where the constant C > 0 depends only on Tref , but not on Ω, T , or f .

Proof. The proof is done elementwise. For T ∈ T and w ∈ H1(T ), we define the integral
mean wT := |T |−1

∫
T w dx. According to the Poincaré inequality, it holds that ‖w − wT ‖L2(T ) ≤

CPhT ‖∇w‖L2(T ), where the constant CP > 0 is independent of T and w. Moreover, w 7→ wT is the
L2-orthogonal projection onto P0(T ).

1. step. It holds that

∣∣∣
∫

T
fvh dx− |T |f(sT )vh(sT )

∣∣∣ ≤ C2
Ph

2
T ‖∇f‖L2(T )‖∇vh‖L2(T ) + ‖fT − f(sT )‖L2(T )‖vh‖L2(T ) :
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From
∫
T vh dx = |T |vh(sT ), we infer that

∫

T
fvh dx− |T |f(sT )vh(sT ) = (f − f(sT ) ; vh)L2(T )

= (f − f(sT ) ; vh − vhT )L2(T ) + (f − f(sT ) ; vhT )L2(T )

= (f − fT ; vh − vhT )L2(T ) + (fT − f(sT ) ; vh)L2(T )

≤ ‖f − fT‖L2(T )‖vh − vhT‖L2(T ) + ‖fT − f(sT )‖L2(T )‖vh‖L2(T ).

where we have used orthogonality of (·)T in the last but one step. The Poincaré inequality concludes
the proof of step 1.

2. step. It holds that ‖fT − f(sT )‖L2(T ) ≤ 2Crefh
2
T ‖D2f‖L2(T ) with an independent constant

Cref > 0, which is obtained from a scaling argument: Let Φ : Tref → T denote an affine diffeomor-
phism with linear part B ∈ R2×2. Note that

fT =
1

|T |

∫
f dx =

|detB|
|T |

∫

Tref

f ◦Φ dx = 2

∫

Tref

f ◦ Φ dx =
1

|Tref |

∫

Tref

f ◦Φ dx = (f ◦ Φ)Tref
.

Together with f(sT ) = (f ◦ Φ)(sTref
), this yields that

‖fT − f(sT )‖L2(T ) = |detB−1|−1/2 ‖(f ◦Φ)Tref
− (f ◦ Φ)(sTref

)‖L2(Tref ).

We define g := f ◦ Φ ∈ H2(Tref) and consider the operator A : H2(Tref) → L2(Tref) defined
by Ag := gTref

− g(sTref
). Then, P1(Tref) ⊆ kerA and continuity of A follows from the Sobolev

inequality

‖Ag‖L2(Tref ) ≤ ‖gTref
‖L2(Tref ) + |Tref |1/2|g(sTref

)| ≤ ‖g‖L2(Tref ) + |Tref |1/2‖g‖∞,Tref

≤ (1 + CSobolev|Tref |1/2)‖g‖H2(Tref )

Therefore, the Bramble-Hilbert lemma provides a constant Cref > 0 with ‖Ag‖L2(Tref ) ≤ Cref‖D2g‖L2(Tref ).
We conclude the scaling argument by

C−1ref ‖(f ◦ Φ)Tref
− (f ◦Φ)(sTref

)‖L2(Tref ) ≤ ‖D2(f ◦Φ)‖L2(Tref ) ≤ |detB|−1/2‖B‖2F ‖D2f‖L2(T ),

which finally leads to

‖fT − f(sT )‖L2(T ) ≤ 2Cref h
2
T ‖D2f‖L2(T ).

3. step. It holds that
∣∣ ∫

T fvh dx− |T |f(sT )vh(sT )
∣∣ ≤ max{C2

P , 2Cref}h2T ‖∇f‖H1(T )‖vh‖H1(T ):
The combination of step 1 and step 2 proves that

∣∣∣
∫

T
fvh dx−|T |f(sT )vh(sT )

∣∣∣

≤ max{C2
P , 2Cref}h2T

(
‖∇f‖L2(T )‖∇vh‖L2(T ) + ‖D2f‖L2(T )‖vh‖L2(T )

)
.

Note that the brackets contain an R2-scalar product which is estimated with the help of the Cauchy
inequality ab+ cd ≤ (a2 + c2)1/2(b2 + d2)1/2. This concludes the proof of step 3.
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4. step. With C := max{C2
P , 2Cref}, we finally sum over all elements T ∈ T to obtain that

|F (vh)− Fh(vh)| ≤
∑

T∈T

∣∣∣
∫

T
fvh dx− |T |f(sT )vh(sT )

∣∣∣

≤ C
∑

T∈T

‖h2∇f‖H1(T )‖vh‖H1(T )

≤ C
( ∑

T∈T

‖h2∇f‖2H1(T )

)1/2( ∑

T∈T

‖vh‖2H1(T )

)1/2

= C ‖h2∇f‖H1(T )‖vh‖H1(Ω)

by use of the Cauchy inequality. This concludes the proof. �

We stress that the proof does not work for f ∈ H1(T ) since H1-functions are in general discon-
tinuous so that the evaluation of f at sT is not well-defined. However, for f ∈ C1(T ), everything
works well.

Exercise 43. For f ∈ C1(T ), define F ∈ H1(Ω)∗ and Fh ∈ S1(T )∗ as in Proposition 5.2.
Then, there holds

‖F − Fh‖S1(T )∗ ≤ C ‖h∇f‖L∞(Ω), (5.12)

where the constant C > 0 does neither depend on Ω nor T or f . ✷

However, if the volume force only satisfies f ∈ H1(T ), one can proceed as follows:

Exercise 44. For f ∈ H1(T ), define F ∈ H1(Ω)∗ as in Proposition 5.2 and Fh ∈ S1(T )∗ by
Fh(vh) :=

∑
T∈T |T |fT vh(sT ), where fT := |T |−1

∫
T f dx denotes the integral mean. Then,

‖F − Fh‖S1(T )∗ ≤ C ‖h2∇f‖L2(Ω), (5.13)

where the constant C > 0 does neither depend on Ω nor T or f . ✷

5.1.3 Approximation of Neumann Data

Finally, we consider the approximation of the Neumann contribution.

Proposition 5.3. Let φ ∈ C2(EN ) :=
{
ψ ∈ L2(ΓN )

∣∣ ∀E ∈ EN ψ|E ∈ C2(E)
}

and
F (v) :=

∫
ΓN

φv ds for v ∈ H1(Ω). Let Fh(vh) :=
∑

E∈EN
hEφ(mE)vh(mE) for vh ∈ S1(T ),

where mE ∈ R2 denotes the midpoint of a Neumann edge E ∈ EN . With the mesh-size function
h ∈ L∞(ΓN ), h|E := hE = diam(E), it then holds

‖F − Fh‖S1(T )∗ ≤ C ‖h3/2φ′‖C1(EN ) := max
E∈EN

(
h
3/2
E max{‖φ′‖L∞(E), ‖φ′′‖L∞(E)}

)
(5.14)

where the constant C > 0 depends only on σ(T ) and |ΓN |.
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Proof. We aim to follow the lines of the proof of Proposition 5.2. For a Neumann edge E ∈ EN
and w ∈ L2(E), let wE := h−1E

∫
E w ds denote the integral mean.

1. step. From
∫
E vh ds = hEvh(mE), we infer that

∫

E
φvh ds− hEφ(mE)vh(mE) = (φ− φ(mE) ; vh)L2(E)

= (φ− φ(mE) ; vh − vhE)L2(E) + (φ− φ(mE) ; vhE)L2(E)

= (φ− φE ; vh − vhE)L2(E) + (φE − φ(mE) ; vh)L2(E)

≤ ‖φ− φE‖L2(E)‖vh − vhE‖L2(E) + ‖φE − φ(mE)‖L2(E)‖vh‖L2(E).

where we have simply used orthogonality of (·)E . Therefore, the trace inequalities (4.10)–(4.11)
yield that

∣∣∣
∫

E
φvh ds− hEφ(mE)vh(mE)

∣∣∣ ≤ C
(
h
1/2
E ‖φ− φE‖L2(E) + h

−1/2
E ‖φE − φ(mE)‖L2(E)

)
‖vh‖H1(T ),

where T ∈ T is an arbitrary element with E ∈ ET . The constant C > 0 depends only on σ(T ) and
on |ΓN |.

2. step. It holds that ‖φ − φE‖L2(E) ≤ h
3/2
E ‖φ′‖L∞(E): Note that w := φ − φE ∈ C1(E) has

necessarily a zero ζ ∈ E. Therefore, the fundamental theorem of calculus proves that

|w(x)| =
∣∣∣
∫ x

ζ
w′ ds

∣∣∣ ≤ h
1/2
E ‖w′‖L2(E).

Integration over E thus yields that

‖φ− φE‖2L2(E) = ‖w‖2L2(E) =

∫

E
|w(x)|2 dsx ≤ h2E‖w′‖2L2(E) = h2E‖φ′‖2L2(E) ≤ h3E‖φ′‖2L∞(E).

3. step. It holds that ‖φE − φ(mE)‖L2(E) ≤ (1/2)h
5/2
E ‖φ′′‖L∞(E): Let p ∈ P1(E) be a

polynomial on E (with respect to the arclength) such that φ(mE) = p(mE) and φ
′(mE) = p′(mE).

Then,

‖φE − φ(mE)‖L2(E) = h
1/2
E |φE − φ(mE)| = h

−1/2
E

∣∣∣
∫

E
φds− hEp(mE)

∣∣∣ = h
−1/2
E

∣∣∣
∫

E
(φ− p) ds

∣∣∣

With w := φ− p and hence w′′ = φ′′, this implies that

‖φE − φ(mE)‖L2(E) ≤ h
−1/2
E ‖w‖L1(E) ≤ ‖w‖L2(E).

Note that w as well as w′ have zeros at the edge midpoint mE. Therefore, the same arguments as
in step 2 (with the zero ζ = mE and hence integration along a segment of length hE/2) prove that

‖w‖2L2(E) ≤
h2E
2

‖w′‖2L2(E) as well as ‖w′‖2L2(E) ≤
h2E
2

‖w′′‖2L2(E) =
h2E
2

‖φ′′‖2L2(E).

Altogether, we see that

‖φE − φ(mE)‖2L2(E) ≤ ‖w‖2L2(E) ≤
h4E
4

‖φ′′‖2L2(E) ≤
h5E
4

‖φ′′‖2L∞(E).
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4. step. The combination of the preceding steps proves that

∣∣∣
∫

E
φvh ds− hEφ(mE)vh(mE)

∣∣∣ ≤ C h2E
(
‖φ′‖L∞(E) + ‖φ′′‖L∞(E)

)
‖vh‖H1(T )

≤ 2C h2E‖φ′‖C1(E)‖vh‖H1(T )

≤ 2C h
1/2
E ‖h3/2φ′‖C1(EN )‖vh‖H1(T )

by definition of ‖w‖C1(E) := max{‖w‖L∞(E), ‖w′‖L∞(E)}.
5. step. We obtain the final result by summing over all Neumann edges E ∈ EN : For each

E ∈ EN we choose an element TE ∈ T with E ∈ ET . Note that the element TE can arise at most 3
times. Therefore,

|F (vh)− Fh(vh)| ≤ 2C ‖h3/2φ′‖C1(EN )

∑

E∈EN

h
1/2
E ‖vh‖H1(TE)

≤ 2C ‖h3/2φ′‖C1(EN )

( ∑

E∈EN

hE

)1/2( ∑

E∈EN

‖vh‖2H1(TE)

)1/2

≤ 2
√
3C |ΓN |1/2‖h3/2φ′‖C1(EN )

( ∑

T∈T

‖vh‖2H1(T )

)1/2

= 2
√
3C |ΓN |1/2‖h3/2φ′‖C1(EN )‖vh‖H1(Ω).

This concludes the proof. �

Exercise 45. (i) Extend the Matlab code solveLaplace such that besides the coefficient
vector of the Galerkin solution uh ∈ S1(T ) even the energy |||uh|||2 = ‖∇uh‖2L2(Ω) is returned.
The Galerkin orthogonality yields that

|||u− uh|||2 = |||u|||2 − |||uh|||2.

Even if the exact energy |||u|||2 is unknown, it can be extrapolated by use of Aitkin’s ∆2-method
to obtain a good approximation of the error |||u− uh|||.
(ii) Consider the homogenous Dirichlet problems

−∆u = 1 in Ω,

u = 0 on Γ = ∂Ω,

with Ω being either the square Ω = (−1, 1)2 or the L-shaped domain Ω = (−1, 1)2\[0, 1]2.
Which experimental convergence rates |||u − uh||| = O(hα) are observed? Do you expect that
the solutions belong to H2(Ω)? Hint: For a convergent sequence (xj)j∈N, the ∆2-sequence
reads

yj = xj −
(xj+1 − xj)

2

xj+2 − 2xj+1 + xj
.

Under certain assumptions on (xj)j∈N the sequence (yj)j∈N then converges faster to lim
j→∞

xj. ✷
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5.2 Inhomogeneous Dirichlet Data

Under the usual assumptions of the mixed boundary value problem of Section 2.3.2, we consider
the boundary value problem

−∆u = f in Ω,

u = uD on ΓD,

∂nu = φ on ΓN .

(5.15)

The only difference to the problem treated above is the fact, that the Dirichlet data uD might be
nontrivial. A function u ∈ C2(Ω) that solves (5.15) is called strong solution of (5.15), and the
formulation (5.15) is called the strong form of the boundary value problem. A function u ∈ H1(Ω)
is weak solution of (5.15) provided that

γu|ΓD
= uD (5.16a)

(∇u ; ∇v)L2(Ω) = (f ; v)L2(Ω) + (φ ; γv)L2(ΓN ) for all v ∈ H1
D(Ω). (5.16b)

These two equations are referred to as the weak form of the boundary value problem (5.15). Note
that the variational part (5.16b) of the weak form is the same as for the mixed boundary value
problem with homogeneous Dirichlet conditions uD = 0.

The following proposition shows that (5.15) and (5.16) are essentially equivalent and that the
weak solution is unique. The unique solvability, however, needs certain assumptions on the Dirichlet
data: If (5.16) has a solution u ∈ H1(Ω), then it holds that γu|ΓD

= uD, i.e., uD can be extended
from ΓD to a function ûD ∈ H1(Ω). With the same arguments as above, cf. Exercise 12 on page 18,
one shows that

H1/2(ΓD) :=
{
γu|ΓD

∣∣ u ∈ H1(Ω)
}

with norm ‖v‖H1/2(ΓD) = inf
{
‖v̂‖H1(Ω)

∣∣ γv̂|ΓD
= v

}

is a Hilbert space. Moreover, H1/2(ΓD) is continuously embedded into L2(ΓD), and the restriction
operator (·)|ΓD

: H1/2(Γ) → H1/2(ΓD) is well-defined and continuous.

Proposition 5.4. (i) Provided that u ∈ C2(Ω) solves the strong form (5.15), u solves also
the weak form (5.16).

(ii) Provided that f ∈ C(Ω), φ ∈ C(ΓN ), and uD ∈ C(ΓD) and that the weak solution u ∈
H1(Ω) of (5.16) additionally satisfies u ∈ C2(Ω), then u even solves the strong form (5.15).

(iii) Let ûD ∈ H1(Ω) be an arbitrary extension of the Dirichlet data uD ∈ H1/2(Γ). Given
f ∈ L2(Ω) and φ ∈ L2(ΓN ), there exists a unique u0 ∈ H1

D(Ω) such that

(∇u0 ; ∇v)L2(Ω) = (f ; v)L2(Ω) − (∇ûD ; ∇v)L2(Ω) + (φ ; γv)L2(ΓN ) for all v ∈ H1
D(Ω).

(5.17)

(iv) Under the assumptions of (iii), a function u ∈ H1(Ω) with γu|ΓD
= uD solves the weak

form (5.16), if and only if u0 := u− ûD ∈ H1
D(Ω) solves (5.17).

(v) Under the assumptions of (iii), there exists a unique weak solution u ∈ H1(Ω) of (5.16).
Contrary to u0 ∈ H1

D(Ω), however, the function u ∈ H1(Ω) does not depend on the special
choice of ûD.
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(vi) The weak solution u ∈ H1(Ω) satisfies

‖u‖H1(Ω) ≤ C1

(
sup

v∈H1
D(Ω)\{0}

(f ; v)L2(Ω)

‖v‖H1(Ω)
+ sup

w∈H1/2(ΓN )\{0}

(φ ; w)L2(ΓN )

‖w‖H1/2(ΓN )

+ ‖uD‖H1/2(ΓD)

)

≤ C2

(
‖f‖L2(Ω) + ‖φ‖L2(ΓN ) + ‖uD‖H1/2(ΓD)

)

(5.18)

where the constants C1, C2 > 0 only depend on Ω and ΓD.

Proof. Note that the variational form (5.16b) does not consider whether uD is zero or not.
Therefore, the same proofs as for the mixed boundary value problem with homogeneous Dirichlet
data apply to prove (i) and (ii). To verify (iii), simply note that the left-hand side of (5.17)
defines an equivalent scalar product on the Hilbert space H1

D(Ω). The right-hand side is linear and
continuous on H1

D(Ω). Therefore, existence and uniqueness of u0 follows from the Riesz theorem.
(iv) is obvious, and (v) thus an immediate consequence of (iii) and (iv). To prove the stability
estimate, we argue as for the homogeneous Dirichlet conditions. With the Friedrichs inequality, we
see that

C−2F ‖u0‖2H1(Ω) ≤ ‖∇u0‖2L2(Ω)

= (∇u0 ; ∇u0)L2(Ω)

= (f ; ∇u0)L2(Ω) + (φ ; γu0)L2(ΓN ) − (∇ûD ; ∇u0)L2(Ω)

≤ ‖u0‖H1(Ω)

(
sup

v∈H1
D(Ω)\{0}

(f ; v)L2(Ω)

‖v‖H1(Ω)
+ sup

w∈H1/2(ΓN )\{0}

(φ ; w)L2(ΓN )

‖w‖H1/2(ΓN )

+ ‖ûD‖H1(Ω)

)

Second, the triangle inequality gives

‖u‖H1(Ω) ≤ ‖ûD‖H1(Ω) + ‖u0‖H1(Ω)

≤ (1 + C2
F )

(
sup

v∈H1
D(Ω)\{0}

(f ; v)L2(Ω)

‖v‖H1(Ω)
+ sup

w∈H1/2(ΓN )\{0}

(φ ; w)L2(ΓN )

‖w‖H1/2(ΓN )

+ ‖ûD‖H1(Ω)

)
.

Taking the infimum over all ûD, we conclude the stability estimate (5.18). �

Remark. A first idea for the numerical approximation of the weak solution u ∈ H1(Ω) of (5.15)
might be the following:

• Construct an extension ûD ∈ H1(Ω) of the Dirichlet data.

• Discretize the variational form (5.17) by P1-FEM to obtain an approximation u0h ∈ S1
D(T )

of u0 ∈ H1
D(Ω).

• Compute uh := u0h + ûD to obtain an approximation of u.

We stress, however, that then uh 6∈ S1(T ) so that a postprocessing or evaluation of uh is nontrivial.
Moreover, we have to compute the scalar product (∇ûD ; ∇vh) for discrete functions to build the
load vector of the P1-FEM for u0. This leads to additional quadrature errors. Finally and most
important, it might be hard to compute ûD unless the Dirichlet data uD are rather simple. ✷

To overcome the difficulties mentioned in the previous remark, one uses the following approach
in practice, which is then called P1-FEM of the weak form (5.16):
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• Discretize Dirichlet data uD ∈ H1/2(ΓD) by some uDh ∈ S1(T |ΓD
) :=

{
vh|ΓD

∣∣ vh ∈ S1(T )
}
.

• Construct extension ûDh ∈ S1(T ) with ûDh|ΓD
= uDh.

• With ûDh replacing ûD, compute P1-FEM approximation u0h ∈ S1
D(T ), cf. (5.17).

• Finally, define uh := u0h + ûDh ∈ S1(T ) as approximation of the weak solution u ∈ H1(Ω).

Note that the discrete solution uh ∈ S1(T ) then belongs to the affine space ûDh + S1
D(T ). The

following result is the corresponding Céa-type lemma:

Lemma 5.5 (Céa lemma, first version). Let u ∈ H1(Ω) be the weak solution of (5.15).
Let ûDh ∈ S1(T ) be the approximate Dirichlet data and uDh := ûDh|ΓD

. Let uh ∈ S1(T ) be
the unique solution of

uh|ΓD
= uDh

(∇uh ; ∇vh)L2(Ω) = (f ; vh)L2(Ω) + (φ ; vh)L2(ΓN ) for all vh ∈ S1
D(T ).

(5.19)

Then, uh is quasioptimal in the sense that there exists a constant C > 0 such that

C−1 ‖u− uh‖H1(Ω) ≤ min
vh∈S

1
D(T )

‖u− (vh + ûDh)‖H1(Ω) = min
wh∈S

1(T )
wh|ΓD

=uD

‖u− wh‖H1(Ω). (5.20)

The constant C > 0 only depends on Ω and ΓD.

Proof. Note that the variational formulations (5.16) and (5.19) imply the Galerkin orthogonality

(∇(u− uh) ; ∇vh)L2(Ω) = 0 for all vh ∈ S1
D(T ).

We define u0h := uh − ûDh ∈ S1
D(T ) and observe that

‖∇(u− uh)‖2L2(Ω) = (∇(u− uh) ; ∇(u− [u0h + ûDh]))L2(Ω)

= (∇(u− uh) ; ∇(u− [vh + ûDh]))L2(Ω)

≤ ‖∇(u− uh)‖L2(Ω)‖∇(u− [vh + ûDh])‖L2(Ω)

for each vh ∈ S1
D(T ). Next, recall that |||v||| := ‖∇v‖L2(Ω) + ‖γv‖L2(ΓD) provides an equivalent

norm on H1(Ω), i.e., there are constants C1, C2 > 0 such that C−11 |||v||| ≤ ‖v‖H1(Ω) ≤ C2 |||v||| for all
v ∈ H1(Ω). Consequently,

C−12 ‖u− uh‖H1(Ω) ≤ ‖∇(u− uh)‖L2(Ω) + ‖γ(u− uh)‖L2(ΓD)

= ‖∇(u− uh)‖L2(Ω) + ‖uD − uDh‖L2(ΓD)

≤ ‖∇(u− [vh + ûDh])‖L2(Ω) + ‖γ(u− [vh + ûDh])‖L2(ΓD)

≤ C1‖u− (vh + ûDh)‖H1(Ω)

for all vh ∈ S1
D(T ). This proves (5.20) with an infimum on the right-hand side. Standard arguments

show that this infimum is, in fact, attained. �
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Exercise 46. Proof that (5.19) has a unique solution uh ∈ S1(T ). ✷

Remark. Note that Lemma 5.5 is independent of how the Dirichlet data are actually discretized,
but the discretization enters the right-hand side, since it constraints the affine space for the mini-
mum in (5.20). Later on, we shall see that appropriate discretization uDh = JhuD by means of the
Scott-Zhang projection Jh even guarantees that

‖u− uh‖H1(Ω) ≤ C min
wh∈S1(T )

‖u− wh‖H1(Ω),

where the right-hand side is independent of how uD is actually discretized; see also Exercise 48–49
below. ✷

Remark. If the Dirichlet data uD have an extension ûD ∈ H2(Ω) with γûD|ΓD
= uD, then uD is

continuous. We define ûDh ∈ S1(T ) nodewise by

ûDh(z) =

{
uD(z) for z ∈ ΓD,

0 else,

for z ∈ K. Let u ∈ H1(Ω) denote the weak solution of (5.15) and u0 := u − ûD ∈ H1
D(Ω). We

additionally define ũDh ∈ S1
D(T ) nodewise by

ũDh(z) =

{
0 for z ∈ ΓD,

ûD(z) else,

for z ∈ K. Note that the nodal interpolant of ûD reads IhûD = ûDh + ũDh and that ‖ûD −
IhûD‖H1(Ω) = O(h) decays with optimal order. Consequently, we may plug-in u = ûD + u0 into
Céa’s lemma to observe that

C−1 ‖u− uh‖H1(Ω) ≤ min
vh∈S

1
D(T )

‖u− (ûDh + vh)‖H1(Ω)

= min
vh∈S

1
D(T )

‖(ûD − IhûD) + (u0 − vh + ũDh)‖H1(Ω)

= min
wh∈S

1
D(T )

‖(ûD − IhûD) + (u0 − wh)‖H1(Ω)

≤ ‖ûD − IhûD‖H1(Ω) + min
wh∈S

1
D(T )

‖u0 − wh‖H1(Ω).

Conversely, it holds that

min
wh∈S

1
D(T )

‖u0 − wh‖H1(Ω) = min
wh∈S

1
D(T )

‖(u− ûD)− wh‖H1(Ω)

= min
wh∈S

1
D(T )

‖u− (wh + IhûD)− (ûD − IhûD)‖H1(Ω)

≤ min
wh∈S

1
D(T )

‖u− (wh + IhûD)‖H1(Ω) + ‖ûD − IhûD‖H1(Ω)

≤ ‖u− uh‖H1(Ω) + ‖ûD − IhûD‖H1(Ω).

Therefore, the proposed P1-FEM for the approximation of u ∈ H1(Ω) converges with the same
order as the P1-FEM for the approximation of u0 ∈ H1

D(Ω). ✷

The inhomogeneous Dirichlet problem allows the proof that the trace operator has a right
inverse L. This inverse is called lifting operator.
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Exercise 47. Let γ ∈ L(H1(Ω);H1/2(Γ)) denote the trace operator. Prove that there exists
a lifting operator L ∈ L(H1/2(Γ);H1(Ω)) such that γLv = v for all v ∈ H1/2(Γ). Hint.
Consider an appropriate Dirichlet-Problem with inhomogeneous Dirichlet data v ∈ H1/2(Γ)
and let u := Lv ∈ H1(Ω) denote the unique solution. ✷

The assumptions of the following exercise will be satisfied for the Scott-Zhang projection.

Exercise 48 (Céa lemma, second version). Suppose that there exists a linear projection
Ph : H1(Ω) → S1(T ) with the following properties

(i) ‖Phv‖H1(Ω) ≤ Cstab ‖v‖H1(Ω) for all v ∈ H1(Ω)

(ii) Phvh = vh for all vh ∈ S1(T )

(iii) (Phv)|ω = v|ω for all v ∈ H1(Ω) with v|ω ∈ S1(T |ω) and ω ∈ {Γ,ΓD}

(iv) (Phv)|ω depends only on the trace v|ω for all v ∈ H1(Ω) and ω ∈ {Γ,ΓD}

Then, for u ∈ H1(Ω) being the solution of (5.15) and uDh := (Phu)|ΓD
, it holds that

min
vh∈S

1(T )
vh|ΓD

=uDh

‖u− vh‖H1(Ω) ≤ C min
wh∈S1(T )

‖u− wh‖H1(Ω),

where C > 0 depends only on the stability constant Cstab, Ω, and ΓD. In particular, this implies
an unconstrained Céa lemma for the mixed boundary value problem with inhomogeneous
Dirichlet data, i.e., under the assumptions of Lemma 5.5 and with uDh = (Phu)|ΓD

, it holds

‖u− uh‖H1(Ω) ≤ C min
wh∈S1(T )

‖u− wh‖H1(Ω).

Hint. Let w ∈ H1(Ω) be the weak solution of ∆w = 0 in Ω subject to the boundary conditions
w = u− uDh on ΓD and ∂nw = 0 on ΓN . Define u0 := u−w. Prove that u0 = uDh on ΓD and
‖u− u0‖H1(Ω) ≃ ‖u− uDh‖H1/2(Γ). Choose vh := Phu0. ✷

The existence of a Scott-Zhang-type projection is essentially equivalent to the validity of the
Céa lemma.

Exercise 49. (a) Suppose that Ph : H1(Ω) → S1(T ) satisfies the properties (i)–(iii) of
Exercise 48 for ω = Γ only. Then, for all u ∈ H1(Ω) and all uDh ∈ S1(T ), it holds that

min
vh∈S

1(T )
vh|Γ=uDh

‖u− vh‖H1(Ω) ≤ C
[

min
wh∈S1(T )

‖u− wh‖H1(Ω) + ‖u− uDh‖H1/2(Γ)

]
, (5.21)

where C > 0 depends only on Ω and the stability constant Cstab. Hint. Argue along the lines
of Exercise 48.
(b) Suppose that (5.21) holds true. Then, there exists a linear projection Ph : H1(Ω) →
S1(T ) which satisfies the properties (i)–(iii) of Exercise 48. Hint. For given u ∈ H1(Ω),
let uDh ∈ S1(T |Γ) be the H1/2(Γ)-best approximation of u|Γ ∈ H1/2(Γ). With this, let
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Phu := uh ∈ S1(T ) be the FEM solution of the inhomogeneous Dirichlet problem with discrete
Dirichlet data uDh. ✷

Remark. Note that, for inhomogeneous Dirichlet data, it holds that

|||u− uh|||2 6= |||u|||2 − |||uh|||2

in general. Therefore, we cannot proceed as in Exercise 45 to approximate the error. Instead, in
academic examples, where u is known, one has to compute

|||u− uh|||2 =
∑

T∈T

‖∇u−∇uh‖2L2(T )

by T -piecewise numerical quadrature. ✷

Exercise 50. Write a Matlab code for the P1-FEM for the mixed boundary value prob-
lem (5.15) with inhomogeneous but continuous Dirichlet data uD. To verify the code, consider
the Dirichlet problem

−∆u = 1 in Ω = [0, 1]2,

u = 1 on Γ.

If u0 denotes the solution of the corresponding homogeneous problem, then it holds that u =
u0 + 1. ✷

5.3 Higher Dimensions

A set T ⊂ Rd is called non-degenerate simplex provided that there are nodes z0, . . . , zd ∈ Rd

with T = conv{z0, . . . , zd} and provided that |T | > 0, i.e., T has positive measure. We note
that T is in particular bounded and closed, whence compact. For d = 2, this definition describes
non-degenerate triangles; for d = 3, this definition describes non-degenerate tetrahedra.

The most important example is the reference simplex

Tref := conv{0, e1, . . . , ed}, (5.22)

where ej is the j-th unit vector. There holds |Tref | = 1/d!

The diameter of T is denoted by

hT := diam(T ) := max
{
|x− y|

∣∣ x, y ∈ T
}
. (5.23)

Moreover, ρT denotes the radius of the largest ball inscribed of T , i.e.,

ρT := sup
{
ρ > 0

∣∣ ∃x ∈ T B(x, ρ) ⊆ T
}
. (5.24)

By KT = {z0, . . . , zd}, we denote the set of nodes of T . By ET , we denote the set of faces of T , i.e.,
ET :=

{
conv(M)

∣∣M ⊆ KT with #M = d
}
. Note that E ∈ ET is a hyper-simplex of dimension

d− 1, e.g., the faces of a tetrahedron are 2-dimensional surface triangles.

Definition. Let Ω be a bounded Lipschitz domain in Rd, d ≥ 2. A set T is a triangulation of Ω
(consisting of simplices) if and only if
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• T is a finite set of non-degenerate simplices,

• the closure of Ω is covered by T , i.e., Ω =
⋃T ,

• for all T, T ′ ∈ T with T 6= T ′ holds |T ∩ T ′| = 0, i.e., the overlap is a set of measure zero.

By K :=
⋃{

x ∈ KT

∣∣T ∈ T
}
, we then denote the set of nodes of the triangulation T and by

E :=
⋃{

E ∈ ET
∣∣T ∈ T

}
the set of faces of the triangulation T . A triangulation of Ω is called

conforming or regular (in the sense of Ciarlet) provided that the intersection of two elements
T, T ′ ∈ T with T 6= T ′ is

• either empty,

• or a joint k-dimensional hyper-simplex of both T and T ′, i.e., T ∩ T ′ = conv(M) with M ⊆
KT ∩ KT ′ and #M = k ≤ d− 1.

According to this regularity assumption, a face E ∈ E with surface measure |E∩Γ| > 0 automatically
satisfies E ⊆ Γ, i.e., a face E is either a boundary face or an interior face. Additionally, we always
assume that a regular triangulation resolves the boundary conditions: If Γ = ∂Ω is partitioned into
Dirichlet and Neumann boundary ΓD and ΓN , respectively, each boundary face E ∈ E with E ⊆ Γ
satisfies

• either E ⊆ ΓD

• or E ⊆ ΓN .

With this assumption, we define the (disjoint) sets of boundary faces

ED :=
{
E ∈ E

∣∣E ⊆ ΓD

}
and EN :=

{
E ∈ E

∣∣E ⊆ ΓN

}
(5.25)

as well as the set of all interior faces

EΩ := E\(ED ∪ EN ). (5.26)

We finally note that, for each E ∈ EΩ, there are two elements T, T ′ ∈ T with E = T ∩ T ′.

For a regular triangulation T , the hat functions provide a basis of S1(T ), and all results of
Section 3.1 hold accordingly.

5.4 Shape Regularity & Scaling Arguments

A regular triangulation T is γ-shape regular if

σ(T ) := max
T∈T

hT
ρT

≤ γ <∞. (5.27)

According to Exercise 17, this new definition is (up to some generic constant) equivalent to the
definition given in Section 3.2.

For a non-degenerate simplex T = conv{z0, . . . , zd} ⊂ Rd, we define

ΦT : Tref → T, ΦT v := z0 +BT v, where BT :=
(
z1 − z0 z2 − z0 . . . zd − z0

)
∈ Rd×d.
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Arguing as in Lemma 3.9, we see that ‖BT ‖F ≃ hT , since the diameter of a simplex is its longest
edge. To employ scaling arguments, it remains to prove ‖B−1T ‖F . ρT . This is done with the help
of the following lemma.

Lemma 5.6. Let T1, T2 ⊂ Rd be compact sets with B(xj , ρj) ⊆ Tj ⊆ B(yj, rj) for some
xj , yj ∈ Tj and ρj, rj > 0. Let Φ : T1 → T2 be affine with Φ(v) := Bv + w and B ∈ Rd×d.
Then, it holds ‖B‖2 ≤ r2/ρ1 for the Euclidean operator norm.

Proof. 1. step. For x ∈ Rd with |x| ≤ 2ρ1, it holds |Bx| ≤ 2r2: Since B(x1, ρ1) ⊆ T1, we
find y, z ∈ T1 with x = y − z. Then, Φ(y),Φ(z) ∈ T2. Since T2 ⊆ B(y2, r2), it follows 2r2 ≥
|Φ(y)− Φ(z)| = |B(y − z)| = |Bx|.

2. step. For x ∈ Rd, it holds |Bx| ≤ (r2/ρ1) |x|: Let x ∈ Rd\{0}. Define v := (2ρ1/|x|)x. From
|v| = 2ρ1, we obtain (2ρ1/|x|)|Bx| = |Bv| ≤ 2r2. This concludes the proof. �

Corollary 5.7. With the above notation, the matrix BT ∈ Rd×d is invertible with |detBT | ≃
|T | and ‖B−1T ‖F . ρ−1T .

Proof. As for 2D, one obtains |detBT | ≃ |T | > 0, and hence BT and ΦT are invertible. Note that
B−1T is the linear part of the affine mapping Φ−1T . Hence, Lemma 5.6 gives ‖B−1F ‖2 ≤ href/ρT ≤ ρ−1T .
Norm equivalence on Rd×d concludes ‖B−1T ‖F ≃ ‖B−1T ‖2 ≤ ρ−1T . �

5.4.1 Conclusion

The analysis of the previous chapters transfers from d = 2 to general dimension d ≥ 2.

• The whole Chapter 2 is stated for Ω ⊂ Rd, d ≥ 2.

• All results of Section 3.1 now hold verbatim for d ≥ 2.

• The Approximation Theorem 3.5 holds for d = 2, 3. For d ≥ 4, one requires higher smoothness
of u to ensure continuity (cf. the Sobolev Theorem 3.4).

• Bramble-Hilbert Lemma 3.7 and transformation formula (Lemma 3.8) have already been
formulated for d ≥ 2.

• The inverse estimate and its applications hold verbatim.

• The data approximation analysis of Section 5.1 in the frame of the first Strang lemma applies
for d = 2, 3. For d ≥ 4, it requires only higher regularity assumptions on f to ensure
continuity.

• Technical auxiliary results like the trace inequality remain valid for general d ≥ 2.

• The a posteriori analysis of Chapter 4 remains valid. Only the proof of Lemma 4.1 which
provides the dual basis functions to define the Scott-Zhang projection, has to be adapted.

• Finally, the adaptive convergence analysis requires hT := |T |1/d ≃ diam(T ). All arguments
remain valid.
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5.5 Really high dimensional approximation

The number of elements in a regular mesh Th in which each element T ∈ Th satisfies diam(T ) ≃
|T |1/d ≃ h scales roughly like O(h−d), i.e., exponentially in the dimension. We remember the
a priori convergence of FEM which states

‖u− uh‖H1(Ω) = O(h)

in case u is sufficiently smooth. To compute uh, we need to solve a linear system with #Th elements.
The cost for this is at least O(#Th) = O(h−d). Thus, in terms of cost, we get the estimate

‖u− uh‖H1(Ω) = O(N−1/d)

with N = #Th.
This shows that the convergence rate with respect to cost goes down in higher dimensions. For

d = 2, halving the error requires four times as many elements. For d = 4, the same error reduction
requires 16-times as many elements. This is usually called the curse of dimensionality and one
remedy for this problem are sparse grids.

5.5.1 Sparse grids

To illustrate the idea, we first look at standard tensor interpolation: For a given set of intervals T ,
let Q1(T ) denote the continuous functions which are affine on each interval in T . Let Iℓ : C([0, 1]) →
Q1(

{
[k2−ℓ, (k + 1)2−ℓ]

∣∣ k = 0, . . . , 2ℓ − 1
}
) denote the nodal interpolation operator in 1D, i.e.,

Iℓv(tk) = v(tk) for all tk = k2−ℓ, k = 0, . . . , 2ℓ.

We denote with Ixℓ that the interpolation operator is applied in dimension x. The approximation
on the d-dimensional tensor mesh

T ⊗ℓ :=
{ d∏

i=1

[ki2
−ℓ, (ki + 1)2−ℓ]

∣∣ k1, . . . , kd ∈ {0, . . . , 2ℓ − 1}
}

is given for v ∈ C0([0, 1]d) by

(I⊗ℓ v)(x) := Ix1
ℓ (Ix2

ℓ . . . (Ixd
ℓ v) . . .)(x1, . . . , xd) ∈ Q1(T ⊗ℓ ),

where

Q1(T ⊗ℓ ) :=
{
v ∈ C0([0, 1]d)

∣∣ ∀1 ≤ i ≤ d, (xi 7→ v(x))|T is a polynomial of degree ≤ 1
}
.

Similarly to the proof of the approximation theorem (Theorem 3.5), one can show

‖v − I⊗ℓ v‖L∞([0,1]d) ≤ C2−ℓ‖v‖C1([0,1]d)

for v ∈ C1([0, 1]d). As we see, the computation of I⊗ℓ v requires the evaluation of 2dℓ points in [0, 1]d

and hence is impractical for many purposes (if d = 100, and ℓ = 1, we would need 2100 points).
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Figure 5.1. The different sparse grid contributions on the left stacked on top of each other
combine to the full grid on the right. The interpolation operator Iℓ = Ix1

ℓ1
Ix2

ℓ2
corresponds to one of

the grids on the left-hand side (e.g., grid number 1 for ℓ = (1, 2) or grid number 5 for ℓ = (3, 1)).

The sparse grid idea is as follows: With the definition I−1 = 0, we may rewrite

(I⊗ℓ v)(x) =

ℓ∑

ℓ1=0

(Ix1
ℓ1

− Ix1
ℓ1−1

)(Ix2
ℓ . . . (Ixd

ℓ v) . . .)(x1, . . . , xd)

=

ℓ∑

ℓ1=0

ℓ∑

ℓ2=0

(Ix1
ℓ1

− Ix1
ℓ1−1

)(Ix2
ℓ2

− Ix2
ℓ2−1

)(Ix3
ℓ . . . (Ixd

ℓ v) . . .)(x1, . . . , xd)

=
∑

ℓ=(ℓ1,...,ℓd)∈{0,...,ℓ}d

(Ix1
ℓ1

− Ix1
ℓ1−1

)(Ix2
ℓ2

− Ix2
ℓ2−1

) . . . (Ixd
ℓd

− Ixd
ℓd−1

)
︸ ︷︷ ︸

=:∆ℓ

(v)(x).

Lemma 5.8. For a subset u ⊆ {1, . . . , d} let ∂xu
:=

∏
i∈u ∂xi denote the partial derivatives

in all directions in u. For sufficiently smooth v ∈ C0([0, 1]d), there holds

‖∆ℓv‖H1([0,1]d) ≤ 4d2−|ℓ|‖∂xu
v‖H1([0,1]d),

where |ℓ| := ℓ1 + . . .+ ℓd and u ⊆ {1, . . . , d} contains each dimension i with ℓi > 0.

Proof. Let x0 = (x0,1, . . . , x0,d) ∈ [0, 1]d and i ∈ {1, . . . , d}. Choose k ∈ N such that |k2−ℓ − x0,i|
is minimal. Without loss of generality, we assume x0,i ≥ k2−ℓ (the other case works analogously).
Rolle’s theorem implies that there exists ξ ∈ (k2−ℓ, (k + 1)2−ℓ) with

∂xi(1− Ixi
ℓ )v(x0,1, . . . , x0,i−1, ξ, x0,i+1, . . . , x0,d) = 0.
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Figure 5.2. The circles represent the number of degrees of freedom of Iℓ in each coordinate
direction. The sparse grid approach only uses interpolation operators which correspond to circles
below the dashed line. This shape is the upper right quadrant of the so-called hyperbolic cross.

With this, there holds

(1− Ixi
ℓ )v(x0) =

∫ x0,i

k2−ℓ

∂xi(1− Ixi
ℓ )v(x0,1, . . . , x0,i−1, z, x0,i+1, . . . , x0,d) dz

=

∫ x0,i

k2−ℓ

∫ z

ξ
∂2xi
v(x0,1, . . . , x0,i−1, t, x0,i+1, . . . , x0,d) dt dz

≤ |(k + 1)2−ℓ − k2−ℓ|3/2‖∂2xi
v(x0,1, . . . , x0,i−1, ·, x0,i+1, . . . , x0,d)‖L2([k2−ℓ,(k+1)2−ℓ])

≤ 2−ℓ‖∂2xi
v(x0,1, . . . , x0,i−1, ·, x0,i+1, . . . , x0,d)‖L2([k2−ℓ,(k+1)2−ℓ]).

We define

Ωk := ⊗i−1
j=1[0, 1] × [k2−ℓ, (k + 1)2−ℓ]×⊗d

j=i+1[0, 1].

This results in

‖(1− Ixi
ℓ )v‖2L2(Ωk)

≤ 2−3ℓ
∫

Ωk

‖∂2xi
v(x0,1, . . . , x0,i−1, ·, x0,i+1, . . . , x0,d‖2L2(Ωk)

dx0

≤ 2−4ℓ‖∂2xi
v‖2L2(Ωk)

.

Since [0, 1]d =
⋃̇2ℓ−1

k=0 Ωk, we obtain

‖(1− Ixi
ℓ )v‖L2([0,1]d) ≤ 2−2ℓ‖∂2xi

v‖L2([0,1]d).

Analogously, we show

‖∇(1− Ixi
ℓ )v‖L2([0,1]d) ≤ 2−ℓ‖∂xiv‖H1([0,1]d).
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The triangle inequality concludes

‖(Ixi
ℓ − Ixi

ℓ−1)v‖H1([0,1]d) ≤ ‖(1 − Ixi
ℓ−1)v‖H1([0,1]d) + ‖(1 − Ixi

ℓ )v‖H1([0,1]d)

≤ 2−(ℓ−1)‖∂xiv‖H1([0,1]d) + 2−ℓ‖∂xiv‖H1([0,1]d)

≤ 2−ℓ+2‖∂2xi
v‖L2([0,1]d).

Assume that ℓi > 0 for all 1 ≤ i ≤ d. Iteration of this result in all dimension shows

‖∇(Ix1
ℓ1

− Ix1
ℓ1−1

) . . . (Ix1
ℓd

− Ixd
ℓd−1

)v‖L2([0,1]d) ≤ 2−ℓ1+2‖∂2x1
∇x2,...,xd

(Ix2
ℓ2

− Ix2
ℓ2−1

) . . . (Ixd
ℓd

− Ixd
ℓd−1

)v‖L2([0,1]d)

= 2−ℓ1+2‖∇x2,...,xd
(Ix2

ℓ2
− Ix2

ℓ2−1
) . . . (Ixd

ℓd
− Ixd

ℓd−1
)∂2x1

v‖L2([0,1]d)

. . .

≤ 4d2−ℓ1−...−ℓd‖∂2x1
∂2x2

. . . ∂2xd
v‖L2([0,1]d).

The proof for the L2-norm works analogously. If some of the ℓi are zero, we just skip those
dimensions in the proof and obtain the stated result. �

With the last result to obtain an error of 2−ℓ, we may ignore all ∆ℓ with |ℓ| > ℓ. This leads to
the sparse grid interpolation operator Idℓ defined by

Idℓ v :=
∑

ℓ∈{0,...,ℓ}d

|ℓ|≤ℓ

∆ℓv. (5.28)

This truncation is illustrated in Figures 5.1–5.2. To analyze the error, we need the following nice
combinatorial identity.

Lemma 5.9. There holds

#
{
ℓ ∈ Nd

0

∣∣ |ℓ| = j
}
=

(
j + d− 1

d− 1

)
.

Proof. There are many proofs of this identity. A nice one goes like this: Imagine the index ℓ ∈ Nd
0

as

1 . . . 1︸ ︷︷ ︸
ℓ1

| 1 . . . 1︸ ︷︷ ︸
ℓ2

| . . . . . . | 1 . . . 1︸ ︷︷ ︸
ℓd

This line contains the |ℓ| + d − 1 symbols z ∈ {1, |}. Exactly d − 1 of the symbols z must satisfy
z = |. Hence there are

(j+d−1
d−1

)
possibilities. �

Theorem 5.10. The sparse grid interpolation error satisfies

‖(1− Idℓ )v‖H1([0,1]d) ≤ C4d(ℓ+ d)d−12−ℓ|v|H2
mix([0,1]

d),
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where

|v|H2
mix([0,1]

d) := max
u⊆{1,...,d}

‖∂2xu
v‖L2([0,1]d).

Proof. Given v ∈ H2
mix([0, 1]

d) we may formally write

v =
∑

ℓ∈Nd
0

∆ℓv.

As shown in Lemma 5.8, we have

‖∆ℓv‖H1([0,1]d) ≤ 4d2−|ℓ|‖v‖H2
mix([0,1]

d).

This implies that the series above converges absolutely and hence we may write the approximation
error as

v − Idℓ v =
∑

ℓ∈Nd0
|ℓ|>ℓ

∆ℓv.

Altogether, we have

‖v − Idℓ v‖H1([0,1]d) ≤
∑

ℓ∈Nd0
|ℓ|>ℓ

‖∆ℓv‖H1([0,1]d) ≤ 4d‖v‖H2
mix([0,1]

d)

∑

ℓ∈Nd0
|ℓ|>ℓ

2−|ℓ|.

The sum can be rewritten as

∑

ℓ∈Nd
0

|ℓ|>ℓ

2−|ℓ| =

∞∑

j=ℓ+1

2−j
∑

ℓ∈Nd
0

|ℓ|=j

1 =

∞∑

j=ℓ+1

2−j
(
j + d− 1

d− 1

)
,

where we used Lemma 5.9 for the last identity. There holds for x ∈ (0, 1)

∞∑

j=ℓ+1

xj
(
j + d− 1

d− 1

)
= ∂d−1x

∞∑

j=ℓ+1

xj+d−1/(d − 1)! = ∂d−1x

xℓ+d

1− x
/(d − 1)!

=
d−1∑

k=0

(
d− 1

k

)
∂kxx

ℓ+d∂d−1−kx (1− x)−1/(d − 1)!

since the series converges absolutely. There holds

(
d− 1

k

)
∂kxx

ℓ+d∂d−1−kx (1− x)−1/(d− 1)!

=
(d− 1)(d − 2) · · · (d− k)

k!(d− 1)!

(
(ℓ+ d) · · · (ℓ+ d− k + 1)

)
(d− 1− k)!

xℓ+d−k

(1 − x)d−k

=
1

k!

(
(ℓ+ d) · · · (ℓ+ d− k + 1)

) xℓ+d−k

(1− x)d−k
≤ (ℓ+ d)d−1

k!

xℓ+d−k

(1− x)d−k
.
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Inserting x = 1/2, we end up with

∞∑

j=ℓ+1

2−j
(
j + d− 1

d− 1

)
. (ℓ+ d)d−12−ℓ.

This concludes the proof. �

The representation in (5.28) is not really good for implementation due to cancelation effects
and the requirement to constantly transform coefficient vectors between different meshes. A better
variant is provided by the inclusion-exclusion formula which is an interesting combinatorial fact in
it self.

Lemma 5.11. For d ∈ N and r ≤ d, the binomial coefficient satisfies the identity

r∑

q=0

(−1)q
(
d

q

)
= (−1)r

(
d− 1

r

)
.

Proof. The proof works by induction. For r = 0, there holds
(
d
0

)
=

(
d−1
0

)
= 1. Assume the

statement holds for r < d. Then, we have

r+1∑

q=0

(−1)q
(
d

q

)
= (−1)r+1

(
d

r + 1

)
+

r∑

q=0

(−1)q
(
d

q

)
= (−1)r+1

(( d

r + 1

)
−

(
d− 1

r

))
.

The well-known identity

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)

with n = d− 1 and k = r concludes the proof. �

Lemma 5.12. With Iℓ := Ix1
ℓ1
Ix2
ℓ2
. . . Ixd

ℓd
for ℓ ∈ Nd

0, there holds

Idℓ =

d∑

k=0

(−1)k
(
d− 1

k

) ∑

ℓ∈N
d
0

|ℓ|=ℓ−k

Iℓ.

Proof. We rewrite (5.28) by

Idℓ =
∑

ℓ∈Nd
0

|ℓ|≤ℓ

∆ℓ =
∑

ℓ′∈Nd
0

|ℓ′|≤ℓ

αℓ
′Iℓ′ (5.29)

for some αℓ ∈ R. Given the definition

∆ℓ = (Ix1
ℓ1

− Ix1
ℓ1−1

)(Ix2
ℓ2

− Ix2
ℓ2−1

) . . . (Ixd
ℓd

− Ixd
ℓd−1

)
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we note that a particular Iℓ′ appears in (5.29) if and only if there exists ℓ ∈ Nd
0 with

|ℓ| ≤ ℓ and ℓ′i ≤ ℓi ≤ ℓ′i + 1 for all i = 1, . . . , d. (5.30)

Moreover, the sign of that Iℓ′ is determined by the parity (odd or even) of the number of dimensions
i with ℓi = ℓ′i + 1. For q = 0, . . . , d, let

Pq(ℓ
′) :=

{
ℓ ∈ Nd

0

∣∣ ℓ satisfies (5.30) and ℓik = ℓ′ik + 1, k = 1, . . . , q
}
.

Then, we observe Pq(ℓ
′) = ∅ if |ℓ′| > |ℓ| − q. Moreover, since for each choice of q indices ik we have

an element of Pq(ℓ
′), there holds

#Pq(ℓ
′) =

(
d

q

)
.

This implies

αℓ
′ =

d∑

q=0

(−1)q#Pq(ℓ
′) =

ℓ−|ℓ′|∑

q=0

(−1)q#Pq(ℓ
′) =

ℓ−|ℓ′|∑

q=0

(−1)q
(
d

q

)
.

Lemma 5.11 shows for r = ℓ− |ℓ′| ≤ d

ℓ−|ℓ′|∑

q=0

(−1)q
(
d

q

)
= (−1)ℓ−|ℓ

′|

(
d− 1

ℓ− |ℓ′|

)
.

Altogether, we see with k = ℓ− |ℓ′|

Idℓ =

d∑

k=0

(−1)k
(
d− 1

k

) ∑

ℓ′∈Nd0
|ℓ′|=ℓ−k

Iℓ′ .

This concludes the proof. �

Lemma 5.13. The number of evaluations of v required for the computation of Idℓ v is less
than

d

(
ℓ+ d− 1

d− 1

)
2ℓ ≤ d(ℓ+ d)d−12ℓ.

Proof. We use the representation from Lemma 5.12. Each Iℓv requires 2|ℓ| evaluations of v for
computation. Lemma 5.9 concludes the proof. �

The last result together with Theorem 5.10 shows the following: A sparse grid of size h > 0
(this means 2−ℓ = h) allows an interpolation error of

‖(1 − Idℓ )v‖H1([0,1]d) . (1 + | log(h)|)αh
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for some exponent α ∈ N with a cost of computation of Idℓ v less than

O
(
(1 + | log(h)|)αh−1

)
.

This means that the error estimate with respect to cost reads

‖(1 − Idℓ )v‖H1([0,1]d) . cost−1

(up to logarithmic factors). The convergence rate is independent of the dimension.
Instead of the sparse interpolation operator, we may also consider the sparse Galerkin projection.

Define the (quad-)mesh

T ⊗
ℓ

:=
{ d∏

i=1

[ki2
−ℓi , (ki + 1)2−ℓi ]

∣∣ ki ∈ {0, . . . , 2ℓi − 1}, i = 1, . . . , d
}

for ℓ = (ℓ1, . . . , ℓd) ∈ Nd
0. Note that we don’t have a triangle mesh any more. However, the abstract

theory just used the fact that

Xℓ =
⊕

ℓ∈Nd0
|ℓ|≤ℓ

Q1(T ⊗
ℓ
)

is a closed subspace of H1([0, 1]d). Hence, we may apply all the results of the previous sections.

Theorem 5.14. We consider

−∆u = f in [0, 1]d,

u = 0 on ∂[0, 1]d.

Assume that u ∈ H2
mix([0, 1]

d) and let uℓ ∈ Xℓ denote the unique Galerkin approximation.
Then, there holds

‖u− uℓ‖H1([0,1]d) ≤ C4d(ℓ+ d)d−12−ℓ‖u‖H2
mix([0,1]

d).

Proof. Note that Iℓu ∈ Q1(T ⊗
ℓ
) by definition. This implies that Idℓ u ∈ Xℓ. Thus, the Céa Lemma

and Theorem 5.10 show the statement. �

Analogously to the proof of Lemma 5.13, we obtain that

dimXℓ . d(ℓ+ d)d−12ℓ.

There are many examples of high-dimensional PDEs in practical applications such as finance,
physics, and chemistry. One notable example is the Schrödinger eigenvalue problem: Given n ∈ N
electrons and m ∈ N nuclei, the goal is to to find the wave function ψ : R3n → C which gives a
probability density of the position xi ∈ R3 of the i-th electron. The wave function is a solution of
the problem

−1

2

n∑

i=1

3∑

j=1

∂2xi
ψ(x1, . . . , xn)

︸ ︷︷ ︸
Laplace in every dimension xi

+
(

−
n∑

i=1

m∑

j=1

Zj

|xi −Rj|2
︸ ︷︷ ︸

force between electrons and nuclei

+

n∑

i=1

n∑

j=i+1

1

|xi − xj|2
︸ ︷︷ ︸
force between electrons

)
ψ(x1, . . . , xn)

= Eψ(x1, . . . , xn).

97



CHAPTER 5. A PRIORI ANALYSIS II

The position of the nuclei of the atoms is given by Rj ∈ R3 and Zj is the charge of the j-th
nucleus. Finally, E ∈ C is the eigenvalue of the wave-function ψ. The first part of the operator
(the Laplacian) is often abbreviated with T and the remaining part with V . This allows us to write
the equation as

(T + V )ψ = Eψ.

We do not yet know how to solve eigenvalue problems, however in the simplified setting

(T + V )ψ = f

for some right-hand side f and Zj < 0 for all j = 1, . . . ,m, we can derive a weak formulation
analogously to the previous chapters. (Note that a negative charge is not physical for a nucleous,
however, for Zj > 0 one needs Fredholm theory not covered in this lecture to show well-posedness
of the weak form.) This results in a problem with d = 3n and hence standard FEM is out of the
question even for a moderate number of electrons.

5.6 Higher-order FEM

Due to the Céa lemma, we observe that it can be advantageous to consider higher-order polynomial
discrete spaces for FEM. For example if the exact solution is smooth, higher-order spaces will achieve
a better rate of convergence of the FEM error.

5.6.1 Higher-order elements in 1D

We consider a “triangulation” T with nodes xi, i = 0, . . . ,M on an interval Ω ⊂ R. Instead
of piecewise linear functions, we may also use higher-order polynomials to construct our discrete
spaces, i.e.

Sp(T ) := {u ∈ H1(Ω) |u|T ◦ΦT ∈ Pp(Tref) ∀T ∈ T }, (5.31a)

Sp
0 (T ) := Sp(T ) ∩H1

0 (Ω) (5.31b)

Here, the we use the mappings from the reference element Tref = [−1, 1], ΦT : Tref → T as defined
above.

Remark. Since ΦT is affine, u|T ◦ΦT is a polynomial of degree p if and only if u|T is a polynomial of
degree p. This means, the definition above is equivalent to Sp(T ) = {u ∈ H1(Ω) |u|T ∈ Pp∀T ∈ T }.
However, for non-affine maps ΦT (e.g., for curved elements) the Definition (5.31) is still valid, while
the second definition above does not generalize. (Remember that the scaling arguments and inverse
estimates in the previous chapters required u|T ◦ ΦT to be polynomial.) ✷

We construct a basis of Sp(T ) on the reference element. We choose a basis {Ni | i = 1, . . . , p+1}
of the polynomial space Pp(Tref) such that

N1(ξ) =
1

2
(1− ξ), N2(ξ) =

1

2
(1 + ξ), Ni(±1) = 0 i ≥ 3.

Remark. The functions Ni, i ≥ 3 can be chosen quite freely. The simplest possibility is Ni(ξ) =
(1− ξ2)ξi−3 for all i ∈ {3, . . . , p+ 1}. For small p = 2, 3, 4, this choice is fine. However, for higher
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p, the choice leads to very badly conditioned stiffness matrices and hence to numerical instabilities.
It is better to choose more “orthogonal” basis functions as for example:

Ni(ξ) =

∫ ξ

−1
Li−2(t) dt, (5.32)

where Li ∈ Pi is the i-th Legendre polynomial. Due to the orthogonality properties of Legendre
polynomials, we have Ni(±1) = 0 for i ≥ 3. For the practical implementation, it is important to

be able to quickly evaluate the basis functions. On one hand, there holds (2i + 1)
∫ ξ
−1 Li(t) dt =

Li+1(ξ)−Li−1(ξ) and on the other hand, the Legendre polynomials can be computed very efficiently
via three-term recurrences. ✷

Since the basis functions vanish for i ≥ 3, it is easy to construct a basis of §Sp(T ) from these
local definitions, i.e.,

B = Blin ∪
(
∪T∈T BT

)
, (5.33)

where Blin = {ϕi | i = 0, . . . ,M} are the hat-functions corresponding to xi, i = 0, . . . ,M and
BT = {ϕT,i | i = 3, . . . , p+ 1} with

ϕT,i(x) =

{
Ni(Φ

−1
T (x)) x ∈ T

0 x ∈ Ω \ T

We note that the construction of the basis above followed a typical recipe in FEM: The local
basis function (the form functions) are associated with geometrical objects, e.g., the hat-functions
are associated with nodes, whereas the bubble functions ϕT,i are associated with elements T ∈ T .
Moreover, we observe that ϕ|T ◦ ΦT ∈ {0, N1, . . . , Np+1}, i.e., a basis function vanishes on an
element, or it is exactly one of the local basis functions Ni.

5.6.2 Higher-order elements in 2D

Analogously to the 1D case, we may define higher-order basis functions in 2D. Let T denote a
regular triangulation and define

Sp(T ) := {u ∈ H1(Ω) | u|K ◦ ΦT ∈ Pp(Tref)},

and Sp
0 (T ) := Sp(T ) ∩H1

0 (Ω).
When constructing the basis functions for the FEM-spaces, we implicitly obeyed the following

rules:

1. The basis functions ϕ ∈ B have a simple structure on the reference element Tref , i.e., for
all T ∈ T the function satisfies ϕ|T ◦ ΦT ∈ {0, N1, N2, . . . , }, where {0, N1, . . . , } is known
explicitly.

2. The support suppϕ of the basis functions ϕ ∈ B is small. This leads to sparse stiffness
matrices and hence more efficient solvers.

3. For implementation, it is often advantageous to associate certain basis functions with geo-
metrical objects, e.g., nodes, edges, elements, ...
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Figure 5.3. The edge E with elements T 1
E
, T 2

E
and ΩE = T 1

E
∪ T 2
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Figure 5.4. Left: N4 on Tref. Right: ϕE.
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The case p = 2

Idea: Construct B as a union of hat functions Blin and edges-bubble functions. The latter functions
ϕE are supported on ΩE (see Figure 5.3). On the edge E, ϕE is a quadratic function as shown in
Figure 5.4.

In engineering literature, the basis functions Ni are often illustrated with a diagram in which
each dot represents a form-function:

5

3

6

41 2

N1, N2, N3 are the hat-functions,

N4(ξ, η) := ξ(1− ξ − η)

N5(ξ, η) := ξη

N6(ξ, η) := η(1− ξ − η)

We note that the edge bubbles N4, . . . , N6 are chosen such that they vanish on two edges of Tref .
Hence, we may associate each of those functions with one edge where it is non-zero. We write the
basis B of S2(T ) as

B = Blin ∪
(
∪e∈EBE

)
,

where Blin is again the set of hat-functions associated with the nodes N . The one-element sets
BE = {ϕE}, E ∈ E contain the edge bubble functions, which are characterized as follows:

ϕE ∈ H1(Ω), suppϕE ⊂ ΩE, ϕE |T ◦ ΦT ∈ {N4, N5, N6} ∀T ∈ ΩE. (5.34)

Remark. If we restrict them to an edge of Tref , the functions Ni (i ∈ {4, 5, 6}) are symmetric with
respect to the midpoint of the edge. Hence, the above definition of ϕE leads to a continuous basis
function. To see this, let E ∈ E with two elements T 1

E , T
2
E ∈ ΩE . Let Γ4 = {(x, 0) |x ∈ (0, 1)},

Γ5 = {(x, y) |x ∈ (0, 1) 1 − x − y = 0}, Γ6 = {(0, y) | y ∈ (0, 1)} denote the three edges of the
reference element Tref . Let i, j ∈ {4, 5, 6} denote the edge numbers corresponding to E, i.e.,
ΦT 1

E
(Γi) = E and ΦT 2

E
(Γj) = E. Then, the above definition of ϕE is equivalent to

ϕE(x) :=





Ni ◦ Φ−1T 1
E
(x) x ∈ T 1

E

Nj ◦Φ−1T 2
E
(x) x ∈ T 2

E

0 else

The symmetry of Ni on the edges shows that this is well-defined since the two cases coincide on
the edge E.

✷
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Chapter 6

Mixed Problems

6.1 Abstract Analysis of Petrov-Galerkin Schemes

Recall that for a continuous linear operator T ∈ L(X,Y ), the adjoint operator T ∗ : Y ∗ → X∗ is
formally defined by

T ∗y∗ ∈ X∗ with (T ∗y∗)(x) := y∗(Tx) for all y∗ ∈ Y ∗ and x ∈ X. (6.1)

It is an easy application of the Hahn-Banach extension theorem that T ∗ ∈ L(Y ∗,X∗) even with the
same operator norm ‖T‖ = ‖T ∗‖. We start this section with some easy, but later on important,
observations.

Lemma 6.1. Let X and Y be normed spaces and T ∈ L(X,Y ). Then, T is an isomorphism
between X and range(T ) if and only if

τ := inf
x∈X\{0}

‖Tx‖Y
‖x‖X

> 0. (6.2)

In this case, there holds ‖T−1 : range(T ) → X‖ = 1/τ . Moreover, the range(T ) is closed
provided that X is a Banach space.

Proof. Clearly, T−1 : range(T ) → X is well-defined (and hence an isomorphism in the sense of
Linear Algebra) if and only if T is injective. If T is not injective, there exists some x 6= 0 with
Tx = 0, and hence it follows τ = 0. In particular, τ > 0 implies that T is injective. By elementary
calculations, we see

τ = inf
x∈X\{0}

‖Tx‖Y
‖x‖X

= inf
y∈range(T )\{0}

‖y‖Y
‖T−1y‖X

=
1

sup
y∈range(T )\{0}

‖T−1y‖X
‖y‖Y

=
1

‖T−1 : range(T ) → X‖

Hence, τ > 0 implies ‖T−1 : range(T ) → X‖ = 1/τ < ∞, i.e., T−1 is even continuous. The same
calculation proves that well-posedness and continuity of T−1 imply τ > 0. Finally, suppose that X
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is a Banach space and τ > 0. Then, range(T ) is a Banach space as well and hence, in particular, a
closed subspace of Y . �

Exercise 51. For each operator T ∈ L(X,Y ) between normed spaces X and Y holds

range(T ) = (ker T ∗)◦ :=
{
y ∈ Y

∣∣∀y∗ ∈ ker T ∗ y∗(y) = 0
}
. (6.3)

Hint: The inclusion range(T ) ⊆ (ker T ∗)◦ can be shown directly, which leads to range(T ) ⊆
(ker T ∗)◦ = (ker T ∗)◦. The converse inclusion follows by use of the Hahn-Banach separation
theorem. ✷

According to the Hahn-Banach extension theorem, the Hahn-Banach embedding

IX : X → X∗∗, (IXx)(x
∗) := x∗(x) for x ∈ X and x∗ ∈ X∗ (6.4)

is an isometric linear operator, whence injective and continuous. A normed space X is reflexive
provided that IX is also surjective and thus an isometric isomorphism between X and X∗∗. We
stress that

• reflexive spaces are, in particular, complete and thus Banach spaces,

• finite dimensional spaces are reflexive,

• all Hilbert spaces are reflexive,

• closed subspaces of reflexive spaces are also reflexive.

All of these facts are simple exercises left to the reader.

Theorem 6.2. Let X and Y be reflexive Banach spaces over R, and T ∈ L(X,Y ∗). Then,
T is an isomorphism if and only if the following two conditions hold:

• inf-sup condition τ := inf
x∈X\{0}

sup
y∈Y \{0}

(Tx)(y)

‖x‖X‖y‖Y
> 0,

• non-degeneracy condition ∀y ∈ Y \{0}∃x ∈ X (Tx)(y) 6= 0.

In this case, there holds ‖T−1‖ = 1/τ for the operator norm of the inverse. The combination
of inf-sup condition and non-degeneracy condition is called LBB condition in the literature,
named after Ladyshenskaja, Babuška, and Brezzi.

Proof. 1. step. According to Lemma 6.1, τ > 0 is equivalent to T : X → range(T ) being an
isomorphism with closed range. It thus remains to show that range(T ) = Y ∗ is equivalent to the
non-degeneracy condition (ND). Assume there exists y∗ ∈ Y ∗ \ range(T ). The Hahn-Banach sepa-
ration theorem implies the existence of a functional ψ ∈ Y ∗∗ such that ψ(y∗) = 1 and ψ|range(T ) = 0.
With the identification of Y ∗∗ and Y , we obtain some y ∈ Y \ {0} with IY y = ψ and

0 = ψ(Tx) = (Tx)(y).
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This contradicts the non-degeneracy condition (ND). We showed that ND implies range(T ) = Y ∗.
For the converse direction assume range(T ) = Y ∗ and y ∈ Y \ {0}. There exists y∗ ∈ Y ∗ with
y∗(y) 6= 0. Hence, we find x ∈ X with Tx = y∗ and hence (Tx)(y) 6= 0. This concludes (ND) and
hence the proof. �

The following simple exercise proves that the assumptions on X in Theorem 6.2 are sharp.

Exercise 52. Let X be a normed space and Y be a reflexive Banach space over R. Let
T ∈ L(X,Y ∗) be an isomorphism. Prove that X is also a reflexive Banach space. Hint: It is
known that a Banach space Z is reflexive, if and only if Z∗ is reflexive. Moreover, Z is reflexive,
if and only if each bounded sequence has a weakly convergent subsequence (i.e., the unit ball
of Z is weakly compact). ✷

We now turn to continuous bilinear forms a : X × Y → R on normed spaces X and Y . So far,
we only considered weak formulations of the type: Find x ∈ X such that

a(x, ·) = x∗ ∈ X∗, (6.5)

where a(·, ·) is a continuous bilinear form on X = Y . For the classical Galerkin scheme, we assumed
that a(·, ·) is even elliptic. Note that the last theorem provides a mathematical framework for weak
formulations of the following type: Find x ∈ X such that

a(x, ·) = y∗ ∈ Y ∗, (6.6)

where a(·, ·) now is a continuous bilinear form a : X × Y → R. In the literature, this approach is
named after Petrov-Galerkin.

Corollary 6.3. Let X and Y be real Banach spaces, where Y is reflexive. Let a : X×Y → R
be bilinear and continuous. Then, the following statements (i)–(ii) are equivalent:

(i) For each y∗ ∈ Y ∗, exists a unique x ∈ X with a(x, ·) = y∗.

(ii) The bilinear form satisfies the LBB condition:

• inf-sup condition α := inf
x∈X\{0}

sup
y∈Y \{0}

a(x, y)

‖x‖X‖y‖Y
> 0,

• non-degeneracy condition ∀y ∈ Y \{0}∃x ∈ X a(x, y) 6= 0.

In this case, it holds

α ‖x‖X ≤ ‖y∗‖Y ∗ ≤ ‖a‖ ‖x‖X , (6.7)

where ‖a‖ := sup
x∈X\{0}
y∈Y \{0}

a(x, y)

‖x‖X‖y‖Y
denotes the continuity bound of a(·, ·).

Proof. We associate with a(·, ·) the operator T ∈ L(X,Y ∗) given by Tx = a(x, ·). Note that (i)
is equivalent to the fact that T is an isomorphism (according to the open mapping theorem).
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According to Theorem 6.2, the latter is characterized by the LBB condition for T which, in fact,
coincides with that for a(·, ·). For given y∗ ∈ Y ∗ and x ∈ X with a(x, ·) = y∗ ∈ Y ∗, it holds
Tx = y∗. With ‖T : X → Y ∗‖ = ‖a‖, we see ‖y∗‖Y ∗ ≤ ‖a‖ ‖x‖X . With x = T−1y∗ and
‖T−1 : Y ∗ → X‖ ≤ 1/α, we derive ‖x‖X ≤ ‖y∗‖Y ∗/α. This concludes the proof. �

One important difference to the elliptic framework now is, that we may not simply replace X
and Y by discrete spaces Xh and Yh, respectively. Instead, Corollary 6.3 states that we need to
satisfy the inf-sup condition and the non-degeneracy condition not only for the pairing (X,Y ) of
continuous spaces, but also for any pairing (Xh, Yh) of discrete spaces. To underline this, note that

T =



0 0 1
0 1 0
1 0 0




is an isomorphism on Y = X = R3. For Xh = Yh = R2 and the canonical embedding, i.e., x ∈ R2

is identified with (x, 0) ∈ R3, the restricted matrix is

Th =

(
0 0
0 1

)

which is clearly singular. We finally note that in the discrete setting the inf-sup condition and the
non-degeneracy condition are equivalent.

Proposition 6.4. Let X and Y be real Banach spaces with dimX <∞ and dimY <∞. Let
a : X × Y → R be bilinear. Then, there holds the following:

(i) The inf-sup condition α := infx∈X\{0} supy∈Y \{0}
a(x,y)
‖x‖X‖y‖Y

> 0 implies dimX ≤ dimY .

(ii) The non-degeneracy condition
(
∀y ∈ Y \{0}∃x ∈ X a(x, y) 6= 0

)
implies dimY ≤

dimX.

(iii) For dimX = dimY , the inf-sup condition is satisfied if and only if the non-degeneracy
condition is satisfied.

Proof. We define the operators A1 ∈ L(X,Y ∗) and A2 ∈ L(Y,X∗) by A1x := a(x, ·) and A2y :=
a(·, y). According to Linear Algebra, finite dimension implies

dimX = dimker(A1) + dim range(A1) ≤ dimker(A1) + dimY ∗ = dimker(A1) + dimY,

dimY = dimker(A2) + dim range(A2) ≤ dimker(A2) + dimX∗ = dimker(A2) + dimX.

1. step. If dimX > dimY , we obtain dimker(A1) > 0. Hence, there exists x ∈ X\{0} with
A1x = 0. This implies a(x, y) = 0 for all y ∈ Y and hence α = 0 for the inf-sup constant. By
contraposition, this shows that the inf-sup condition implies dimker(A1) = 0 and hence dimX ≤
dimY . This proves (i).

2. step. If dimY > dimX, we obtain dimker(A2) > 0. Hence, there exists y ∈ Y \{0} with
A2y = 0. This implies a(x, y) = 0 for all x ∈ X, and hence the non-degeneracy condition fails. By
contraposition, this shows that the non-degeneracy condition implies dimker(A2) = 0 and hence
dimY ≤ dimX. This proves (ii).
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3. step.
In Step (ii), we have shown that (ND) implies injectivity of A2. Since dimX = dimY = dimY ∗,

this proves that A2 is bijective. The converse implication is obvious, i.e., A2 is bijective if and only
if (ND) holds. In Step (i), we showed that the inf-sup condition implies injectivity of A1. Since
dimX = dimY = dimY ∗, this proves that A1 is bijective. Again, the converse implication is
easy, i.e., A1 is bijective if and only if the inf-sup condition holds. To conlcude (iii), we only
have to show that bijectivity of A1 and A2 are equivalent. To that end, let {x1, . . . , xn} ⊂ X
and {y1, . . . , yn} ⊂ Y be bases. We define the matrix A ∈ Rn×n, Ajk := a(xk, yj) and note
that (A1xk)(yj) = a(xk, yj) = Ajk as well as (A1yj)(xk) = a(xk, yj) = Ajk. Therefore, A is the
Petrov-Galerkin matrix corresponding to A1 and its transpose AT is the Petrov-Galerkin matrix
corresponding to A2. Therefore, Linear Algebra proves the equivalence

A1 is bijective ⇐⇒ A is regular ⇐⇒ AT is regular ⇐⇒ A2 is bijective

This concludes the proof. �

Exercise 53. Prove that a bilinear form a : X × Y → R on normed spaces X and Y is

continuous if and only if ‖a‖ := sup
x∈X\{0}
y∈Y \{0}

a(x, y)

‖x‖X‖y‖Y
<∞. ✷

The following exercise states the quasi optimality of Petrov-Galerkin schemes. We stress, how-
ever, that the quasi-optimality constant depends on the discrete inf-sup condition.

Exercise 54 (Céa’s Lemma for Petrov-Galerkin Schemes). We consider the weak
form (6.6) with a continuous bilinear form a : X × Y → R on Banach spaces X and Y . Let
y∗ ∈ Y ∗. Let Xh and Yh be finite dimensional subspaces of X resp. Y with dimXh = dimYh.
We assume the

• discrete inf-sup condition αh := inf
xh∈Xh\{0}

sup
yh∈Yh\{0}

a(xh, yh)

‖xh‖X‖yh‖Y
> 0,

Then, there is a unique xh ∈ Xh with

a(xh, ·) = y∗ ∈ Y ∗h . (6.8)

If x ∈ X solves the weak form (6.6), we have quasi optimality

‖x− xh‖X ≤
(
1 + ‖a‖/αh

)
min

vh∈Xh

‖x− vh‖X , (6.9)

where ‖a‖ := sup
x∈X\{0}
y∈Y \{0}

a(x, y)

‖x‖X‖y‖Y
denotes the continuity bound of a(·, ·). ✷

A simple observation is that the LBB theory allows a generalization of the Lax-Milgram lemma
to the case of reflexive Banach spaces.
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Exercise 55 (Lax-Milgram Lemma for Reflexive Spaces). Let a : X × X → R be a
continuous and elliptic bilinear form on the reflexive Banach space X. Prove that a(·, ·) satisfies
the inf-sup condition

τ := inf
x∈X\{0}

sup
y∈X\{0}

a(x, y)

‖x‖X‖y‖X
> 0

as well as the non-degeneracy condition

∀y ∈ X\{0}∃x ∈ X a(x, y) 6= 0.

For each given right-hand side x∗ ∈ X∗, the weak form (6.5) thus has a unique solution x ∈ X.
✷

Another observation is that for reflexive spaces, it is immaterial whether the LBB condition is
stated for the first or the second component.

Exercise 56. Let X,Y be reflexive Banach spaces and a : X×Y → R be a continuous bilinear
form. Prove that the following statements (i)–(ii) are equivalent:

(i) The bilinear form satisfies the LBB condition for the first argument:

• α1 := inf
x∈X\{0}

sup
y∈Y \{0}

a(x, y)

‖x‖X‖y‖Y
> 0,

• ∀y ∈ Y \{0}∃x ∈ X a(x, y) 6= 0.

(ii) The bilinear form satisfies the LBB condition for the second argument:

• α2 := inf
y∈Y \{0}

sup
x∈X\{0}

a(x, y)

‖x‖X‖y‖Y
> 0,

• ∀x ∈ X\{0}∃y ∈ Y a(x, y) 6= 0.

Moreover, in this case there holds α1 = α2. ✷

6.2 Abstract Analysis of Mixed Formulations

Instead of the general mixed formulation (6.6), we consider linear problems with side constraints
in the following. These arise, for instance, for the Stokes problem.

Before we focus on the abstract solution theory, we explain why these problems are called saddle
point problems: Plotting a function f : R2 → R over the two-dimensional plane, we call a point
(x, y) saddle point of f if the real function f(x + t, y) has a minimum at t = 0 and the function
f(x, y + t) has a maximum for t = 0. This is, what is stated in the following proposition for the
so-called Lagrange functional.
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Proposition 6.5.
Let a : X × X → R and b : X × Y → R be bilinear forms on normed spaces X and

Y . Assume that a(·, ·) is positive semidefinite, i.e., a(x, x) ≥ 0 and symmetric. Then, given
(x∗, y∗) ∈ X∗ × Y ∗, (x, y) ∈ X × Y is a solution of the saddle point problem

a(x, ·) + b(·, y) = x∗ ∈ X∗

b(x, ·) = y∗ ∈ Y ∗.
(6.10)

if and only if the Lagrange functional L(v,w) := 1

2
a(v, v) − x∗(v) + b(v,w) − y∗(w) satisfies

L(x,w) ≤ L(x, y) ≤ L(v, y) for all (v,w) ∈ X × Y, (6.11)

i.e., (x, y) is a saddle point of L(·, ·). In this case, the first estimate in (6.11) holds with
equality.

Proof. First, assume that (x, y) ∈ X × Y is a solution of the saddle point problem (6.10). For
w ∈ Y , the second equality in (6.10) implies

L(x, y)− L(x,w) = b(x, y − w)− y∗(y − w) = 0.

This proves the lower estimate of (6.11) even with equality. For v ∈ X, symmetry of a(·, ·) and the
first equality in (6.10) prove

L(v, y)− L(x, y) = 1

2
a(x− v, x− v) + a(x, v − x)− x∗(v − x) + b(v − x, y)︸ ︷︷ ︸

=0

≥ 0,

and we obtain the upper estimate. Altogether, (x, y) is a saddle point of the Lagrange functional.
The proof of the converse implication follows from a classical argument from the calculus of varia-
tions: Let (x, y) ∈ X × Y satisfy (6.11). For fixed v ∈ X, the real function f(t) := L(x+ tv, y) has
a global minimum at t = 0. There holds

f(t) =
1

2
a(x, x)− x∗(x) + b(x, y)− y∗(y) +

t2

2
a(v, v) + t{a(x, v) − x∗(v) + b(v, y)}.

Hence 0 = f ′(0) = a(x, v)−x∗(v)+ b(v, y) for all v ∈ X. This proves the first equality in (6.10). To
prove the second equality, consider, for fixed w ∈ Y , the real function g(t) := L(x, y + tw) which
has a global maximum at t = 0. There holds

g(t) =
1

2
a(x, x) − x∗(x) + b(x, y)− y∗(y) + t{b(x,w) − y∗(w)}

and thus 0 = g′(0) = b(x,w) − y∗(w) for all w ∈ Y , i.e., b(x, ·) = y∗ ∈ Y ∗. �

The following theorem of Brezzi provides existence and uniqueness of the solution of saddle
point problems.
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Theorem 6.6 (Brezzi). Let X be a Hilbert space and Y be a reflexive Banach space. Let
a : X × X → R and b : X × Y → R be continuous bilinear forms. We define X0 :=

{
x ∈

X
∣∣ b(x, ·) = 0 ∈ Y ∗

}
and assume

• α := inf
v∈X0\{0}

a(v, v)

‖v‖2X
> 0, i.e., a(·, ·) is elliptic on X0,

• β := inf
y∈Y \{0}

sup
x∈X\{0}

b(x, y)

‖x‖X‖y‖Y
> 0.

Then, for any (x∗, y∗) ∈ X∗ × Y ∗, there is a unique solution (x, y) ∈ X × Y of

a(x, ·) + b(·, y) = x∗ ∈ X∗

b(x, ·) = y∗ ∈ Y ∗.
(6.12)

Moreover, we have the stability estimates

‖x‖X ≤ 1

α
‖x∗‖X∗ +

1

β

(
1 +

‖a‖
α

)
‖y∗‖Y ∗ (6.13)

and

‖y‖Y ≤ 1

β

(
1 +

‖a‖
α

)(
‖x∗‖X∗ +

‖a‖
β

‖y∗‖Y ∗

)
(6.14)

Remark. (i) Note that one can identify X∗×Y ∗ = (X×Y )∗ as follows: For x∗ ∈ X∗ and y∗ ∈ Y ∗,
the definition z∗(x, y) := x∗(x) + y∗(y) yields z∗ ∈ (X × Y )∗. Conversely, z∗ ∈ (X × Y )∗ gives rise
to x∗(x) := z∗(x, 0) and y∗(y) := z∗(0, y) with (x∗, y∗) ∈ X∗ × Y ∗.

(ii) If we define operators A1 ∈ L(X,X∗), B1 ∈ L(X,Y ∗), and B2 ∈ L(Y,X∗) by

A1x := a(x, ·), B1x := b(x, ·), and B2y := b(·, y),

Equation (6.12) can be written in the form

(
A1 B2

B1 0

)(
x
y

)
=

(
x∗

y∗

)
. (6.15)

In this form, the Brezzi theorem states that this operator matrix is an isomorphism from X × Y
to X∗ × Y ∗ = (X × Y )∗ and so fits into the abstract framework given above.

(iii) We stress that the original proof of Brezzi works for reflexive Banach spaces X and Y . Therein,
it is proved directly that the operator matrix from (6.15) satisfies the inf-sup condition as well as the
non-degeneracy condition. Our stronger assumption that X is not only a reflexive Banach space,
but even a Hilbert space, reduces the technical difficulties and leads to a much simpler proof. ✷

Sketch of Proof of Theorem 6.6. Let (x, y) ∈ X ×Y . With the orthogonal decomposition
X = X0 ⊕X⊥0 , we write x = x1 + x2 with x1 ∈ X0 and x2 ∈ X⊥0 . Note that (6.12) is equivalent to
the following three identities:
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• b(x2, ·) = y∗ ∈ Y ∗,

• a(x1, ·) = x∗ − a(x2, ·) ∈ X∗0 ,

• b(·, y) = x∗ − a(x1 + x2, ·) ∈ X∗.

For the proof of Theorem 6.6 we are going to show that these three equations — proved in the
stated order — admit unique solutions x2 ∈ X⊥0 , x1 ∈ X0, and y ∈ Y ∗. This proves existence and
uniqueness of the solution (x, y) = (x1 + x2, y) ∈ X × Y of (6.12). �

The main ingredient of the proof of Theorem 6.6 is the closed range theorem:

Theorem 6.7 (Banach’s Closed Range Theorem). For an operator T ∈ L(X,Y )
between Banach spaces X and Y , the following is equivalent:
(i) range(T ) ⊆ Y is closed,
(ii) range(T ) = (ker T ∗)◦ =

{
y ∈ Y

∣∣ ∀y∗ ∈ kerT ∗ y∗(y) = 0
}
,

(iii) range(T ∗) ⊆ X∗ is closed,
(iv) range(T ∗) = (ker T )◦ =

{
x∗ ∈ X∗

∣∣∀x ∈ kerT x∗(x) = 0
}
. �

Proof of Theorem 6.6. The essential steps of the proof are based on operator arguments for the
operators defined by B1x := b(x, ·) and B2y := b(·, y). We are going to consider the four operators

B1 ∈ L(X,Y ∗), B∗1 ∈ L(Y ∗∗,X∗),

B2 ∈ L(Y,X∗), B∗2 ∈ L(X∗∗, Y ∗).

More precisely, the first three steps state the essential observations about these operators, whereas
the remaining proof follows the line of the sketch given before.

1. step. B2 is injective with closed range and ‖B−12 : range(B2) → Y ‖ = 1/β, which follows
from Lemma 6.1 and

β = inf
y∈Y \{0}

‖B2y‖X∗

‖y‖Y
.

2. step. There holds B2 = B∗1IY , which follows from

(B2y)(x) = b(x, y) = (B1x)(y) = (IY y)(B1x) = (B∗1IY y)(x) for all x ∈ X, y ∈ Y.

3. step. Since Y is reflexive, B∗1 is injective with closed range(B∗1) = range(B2). Moreover, the
closed range theorem even proves

range(B2) = range(B∗1) = (kerB1)
◦ = (X0)

◦ as well as range(B1) = (kerB∗1)◦ = Y ∗.

4. step. There is a unique x2 ∈ X⊥0 with b(x2, ·) = y∗ ∈ Y ∗: According to step 3, there is at least
one x ∈ X with b(x, ·) = B1x = y∗. The decomposition x = x1 + x2 with x1 ∈ X0 and x2 ∈ X⊥0
proves b(x2, ·) = b(x, ·) = y∗ ∈ Y ∗, which concludes existence. To prove uniqueness, let x̃2 ∈ X⊥0
with b(x̃2, ·) = y∗ ∈ Y ∗. Then, b(x2 − x̃2, ·) = 0 ∈ Y ∗, whence x2 − x̃2 ∈ kerB1 = X0. From
x2 − x̃2 ∈ X⊥0 , we thus obtain x2 = x̃2.
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5. step. There is a unique element x1 ∈ X0 with a(x1, ·) = x∗−a(x2, ·) ∈ X∗0 which immediately
follows from the Lax-Milgram lemma and the observation that X0 is a closed subspace of a Hilbert
space and hence a Hilbert space as well.

6. step. There is a unique element y ∈ Y with b(·, y) = x∗ − a(x, ·), where x := x1 + x2 ∈ X:
By construction in step 5, there holds

x∗ − a(x, ·) ∈ (X0)
◦ =

{
v∗ ∈ X∗

∣∣ ∀v ∈ X0 v∗(v) = 0
}
.

According to step 1 and step 3, B2 is injective with range(B2) = (X0)
◦. Thus, there is a unique

y ∈ Y with b(·, y) = B2y = x∗ − a(x, ·).
7. step. There holds ‖x2‖X ≤ ‖y∗‖Y ∗/β: From x2 ∈ X⊥0 follows (x2 ; ·)X ∈ (X0)

◦ = range(B2).
Thus, we may choose ỹ ∈ Y with B2ỹ = (x2 ; ·)X . From ‖B−12 : (X0)

◦ → Y ‖ = 1/β, we infer
‖ỹ‖Y ≤ ‖(x2 ; ·)X‖X∗/β = ‖x2‖X/β. Together with b(x2, ·) = y∗, we conclude

‖x2‖2X = (x2 ; x2)X = (B2ỹ)(x2) = b(x2, ỹ) = y∗(ỹ) ≤ ‖y∗‖Y ∗‖ỹ‖Y ≤ ‖y∗‖Y ∗

β
‖x2‖X .

8. step. There holds ‖x1‖X ≤ α−1 (‖x∗‖X∗ + ‖a‖‖x2‖X): Note that A1 ∈ L(X0,X
∗
0 ) is an

isomorphism with ‖A−11 : X∗0 → X0‖ ≤ 1/α. From A1x1 = a(x1, ·) = x∗ − a(x2, ·), we thus infer

‖x1‖X ≤ 1

α
‖x∗ − a(x2, ·)‖X∗

0
≤ 1

α

(
‖x∗‖X∗ + ‖a‖‖x2‖X

)
.

9. step. The triangle inequality leads to

‖x‖X ≤ ‖x1‖X + ‖x2‖X ≤ 1

α
‖x∗‖X∗ +

(‖a‖
α

+ 1
)
‖x2‖X ≤ 1

α
‖x∗‖X∗ +

1

β

(‖a‖
α

+ 1
)
‖y∗‖Y ∗ .

10. step. It finally remains to dominate ‖y‖Y , where B2y = b(·, y) = x∗ − a(x, ·) ∈ (X0)
◦. We use

‖B−12 : (X0)
◦ → Y ‖ = 1/β to see

‖y‖Y ≤ 1

β
‖x∗ − a(x, ·)‖X∗ ≤ 1

β
‖x∗‖X∗ +

‖a‖
β

‖x‖X

≤ 1

β
‖x∗‖X∗ +

‖a‖
β

1

α
‖x∗‖X∗ +

‖a‖
β2

(
1 +

‖a‖
α

)
‖y∗‖Y ∗

=
1

β

(
1 +

‖a‖
α

)(
‖x∗‖X∗ +

‖a‖
β

‖y∗‖Y ∗

)
.

This concludes the proof. �

Remark. (i) Let B1 ∈ L(X,Y ∗) and B2 ∈ L(Y,X∗) be defined as in the proof of Theorem 6.6.
In the proof, we have seen that β > 0 implies surjectivity of B1. We note that even the converse
implication holds, i.e.,

β := inf
y∈Y \{0}

sup
x∈X\{0}

b(x, y)

‖x‖X‖y‖Y
> 0 ⇐⇒ B1 is surjective. (6.16)

Suppose that B1 is surjective. As in step 3 of the preceding proof, the closed range theorem proves
that B∗1 is injective with closed range. Moreover, B2 = B∗1IY proves that B2 is injective with closed
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range(B2) = range(B∗1) = (kerB1)
◦ = (X0)

◦, i.e., B2 : Y → range(B2) is continuous and bijective
between the Banach spaces Y and range(B2) ⊆ X∗. According to the open mapping theorem,
B2 : Y → range(B2) even is an isomorphism, i.e., β−1 = ‖B2 : Y → range(B2)‖ < ∞, whence
β > 0.

(ii) Altogether, the two main assumptions on a(·, ·) and b(·, ·) can equivalently be stated as follows:

• The bilinear form a(·, ·) is elliptic on X0 = kerB1.

• The operator B1 ∈ L(X,Y ∗) is surjective.

We hope that the reader may keep this (abstract) formulation in mind much easier. For the
statement of Theorem 6.6, we used the definition of α and β instead, to provide the stability
estimates (6.13)–(6.14) with explicit constants. ✷

Going through the proof of Theorem 6.6, one realizes that ellipticity of a(·, ·) on X0 is only used
to provide a unique x1 ∈ X0 with a(x1, ·) = x∗0 ∈ X∗0 in step 5. To prove unique existence of x1,
it is, however, sufficient to assume that the operator A1 : X0 → X∗0 defined by A1x := a(x, ·) is an
isomorphism. This is done in the following exercise.

Exercise 57. LetX, Y , a(·, ·), and b(·, ·) be as in Theorem 6.6. Then, the following statements
are equivalent:

(i) For all (x∗, y∗) ∈ X∗ × Y ∗, there exists a unique solution (x, y) ∈ X × Y of the saddle
point problem (6.12).

(ii) The bilinear forms a(·, ·) and b(·, ·) satisfy the following three assumptions:

• α := inf
v∈X0\{0}

sup
w∈X0\{0}

a(v,w)

‖v‖X‖w‖X
> 0,

• ∀w ∈ X0\{0}∃v ∈ X0 a(v,w) 6= 0,

• β := inf
y∈Y \{0}

sup
x∈X\{0}

b(x, y)

‖x‖X‖y‖Y
> 0.

The first two assumptions state that A1 : X0 → X∗0 is an isomorphism, cf. Theorem 6.2. The
assumption on β is the same as in the above statement of the Brezzi theorem. ✷

The following corollary provides the relation between saddle point problems and the abstract
Petrov-Galerkin scheme from Section 6.1.

Corollary 6.8. Suppose that X is a Hilbert space, Y is a reflexive Banach space, and
a : X ×X → R and b : X × Y → R are continuous bilinear forms. Then, Z := X × Y is a
reflexive Banach space, and c((x, y), (x̃, ỹ)) := a(x, x̃) + b(x̃, y) + b(x, ỹ) defines a continuous
bilinear form c : Z ×Z → R. Moreover, for (x, y) ∈ X × Y and (x∗, y∗) ∈ X∗ × Y ∗, the saddle
point problem (6.12) is equivalent to

c((x, y), (x̃, ỹ)) = x∗(x̃) + y∗(ỹ) for all (x̃, ỹ) ∈ X × Y. (6.17)
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Finally, the following three statements are equivalent:

(i) a(·, ·) and b(·, ·) satisfy the assumptions of the Brezzi theorem, i.e.,

• α := inf
v∈X0\{0}

sup
w∈X0\{0}

a(v,w)

‖v‖X‖w‖X
> 0 with X0 :=

{
x ∈ X

∣∣ b(x, ·) = 0 ∈ Y ∗
}
,

• ∀w ∈ X0\{0}∃v ∈ X0 a(v,w) 6= 0,

• β := inf
y∈Y \{0}

sup
x∈X\{0}

b(x, y)

‖x‖X‖y‖Y
> 0.

(ii) c(·, ·) satisfies the LBB conditions

• γ := inf
z∈Z\{0}

sup
w∈Z\{0}

c(z, w)

‖z‖Z‖w‖Z
> 0,

• ∀w ∈ Z\{0}∃z ∈ Z c(z, w) 6= 0.

(iii) For all (x∗, y∗) ∈ X∗ × Y , the variational formulation (6.17) has a unique solution
(x, y) ∈ X × Y .

In particular, it holds ‖c‖ ≤ ‖a‖+2 ‖b‖ for the corresponding norms and there exists a constant
C > 0 such that

γ ≥ C
[ 1
α
+

1

β

(
1 +

‖a‖
α

)(
1 +

‖a‖
β

)]−1
. (6.18)

Proof. 1. step. Since X and Y are reflexive, their closed unit balls BX ⊂ X and BY ⊂ Y are
weakly compact. According to the Tychonov theorem, BX ×BY and hence BZ are weakly compact
as well. Consequently, Z is reflexive. Moreover, it is obvious that c(·, ·) is bilinear and continuous
with ‖c‖ ≤ ‖a‖ + 2 ‖b‖.

2. step. Summing the equations of (6.12), we obtain the variational form (6.17). Testing (6.17)
with test functions of the type (x̃, 0) or (0, ỹ), we see that (6.12) and (6.17) are, in fact, equivalent.

3. step. The equivalence of (ii) and (iii) is stated in Corollary 6.3. The equivalence of (i) and
(iii) follows from step 2 and Exercise 57.

4. step. It remains to prove (6.18): From (6.13)–(6.14), we obtain

‖x‖X + ‖y‖Y ≤ 1

α
‖x∗‖X∗ +

1

β

(
1 +

‖a‖
α

)
‖y∗‖Y ∗ +

1

β

(
1 +

‖a‖
α

)(
‖x∗‖X∗ +

‖a‖
β

‖y∗‖Y ∗

)

=
[ 1
α
+

1

β

(
1 +

‖a‖
α

)]
‖x∗‖X∗ +

1

β

(
1 +

‖a‖
α

)(
1 +

‖a‖
β

)
‖y∗‖Y ∗

≤
[ 1
α
+

1

β

(
1 +

‖a‖
α

)(
1 +

‖a‖
β

)] [
‖x∗‖X∗ + ‖y∗‖Y ∗

]
.

With the operator Tz := c(z, ·), this proves that the solution operator T−1 : X∗×Y ∗ → X×Y has

operator norm ‖T−1‖ ≤ C
[
1
α + 1

β

(
1+ ‖a‖α

)
1
β

(
1+ ‖a‖β

)]
, where C > 0 depends only on the norms

chosen on Z = X × Y and Z∗ = X∗ × Y ∗. According to Theorem 6.2, it holds ‖T−1‖ = 1/γ. This
concludes the proof. �
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Exercise 58. Give a direct proof that c(·, ·) from Corollary 6.8 satisfies the LBB condition,
i.e., prove directly that (i) implies (ii). Hint. For (x, y) 6= 0 use the orthogonal decomposition
x = x1 + x2 ∈ X0 +X⊥0 and estimate ‖x1‖X , ‖x2‖X , and ‖y‖Y separately. ✷

Corollary 6.8 together with Exercise 54 provides a solvability theory and the Céa lemma for
Galerkin discretizations of saddle point problems.

Corollary 6.9 (Céa Lemma for Saddle Point Problems, Version I). Let a : X×X →
R and b : X × Y → R be continuous bilinear forms on a Hilbert space X and a reflexive
Banach space Y . Given (x∗, y∗) ∈ X∗ × Y ∗, let (x, y) ∈ X × Y be a solution of the saddle
point problem (6.12). Let Xh ⊂ X and Yh ⊂ Y be finite dimensional subspaces and define
X0h :=

{
xh ∈ Xh

∣∣ b(xh, ·) = 0 ∈ Y ∗h
}
. Suppose that

• αh := inf
vh∈X0h\{0}

sup
wh∈X0h\{0}

a(vh, wh)

‖vh‖X‖wh‖X
> 0,

• βh := inf
yh∈Yh\{0}

sup
xh∈Xh\{0}

b(xh, yh)

‖xh‖X‖yh‖Y
> 0.

Then, there is a unique solution (xh, yh) ∈ Xh × Yh of the discrete saddle point problem

a(xh, ·) + b(·, yh) = x∗ ∈ X∗h,
b(xh, ·) = y∗ ∈ Y ∗h ,

(6.19)

and there holds

‖x− xh‖X + ‖y − yh‖Y ≤ C
(

min
x̃h∈Xh

‖x− x̃h‖X + min
ỹh∈Yh

‖y − ỹh‖Y
)

The constant C > 0 depends only on (‖a‖+‖b‖)/γh with γh :=
[

1
αh

+ 1
βh

(
1+ ‖a‖αh

)
1
βh

(
1+ ‖a‖βh

)]
.

Proof. The existence and uniqueness of (xh, yh) follows from the abstract Brezzi theorem; see
Corollary 6.8. For Petrov-Galerkin schemes, the constant in the Céa lemma depends only on the
quotient of the continuity bound and the discrete inf-sup constant; see Exercise 54. Both constants
have been estimated in Corollary 6.8. �

Remark. The Galerkin discretization of saddle point problems is structurally much more difficult
than for problems of the Lax-Milgram lemma:

(i) Note that X0h 6⊆ X0 :=
{
v ∈ X

∣∣ b(v, ·) = 0 ∈ Y ∗
}
. There may be even no relation between X0

and X0h besides the trivial X0 ∩Xh ⊆ X0h. In particular, there is no relation between α and αh

even if a(·, ·) is elliptic on X0.

(ii) However, if a(·, ·) is already elliptic on X, i.e., τ := infx∈X\{0}
a(x,x)
‖x‖2X

> 0 this implies α ≥ τ and

αh ≥ τ for the continuous and discrete inf-sup constant of a(·, ·).
(iii) Moreover, β > 0 from the continuous formulation does not imply βh > 0 for the discrete
formulation. Below, we introduce Fortin’s criterium which provides some help on this matter.
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(iv) Finally, we recall that βh > 0 implies necessarily dimYh ≤ dimXh; see Proposition 6.4. ✷

Exercise 59. For a matrix A ∈ Rm×n holds ker(AT ) = (rangeA)⊥ as well as range(AT ) =
(kerA)⊥, where (·)⊥ denotes the orthogonal complement with respect to the usual Euclidean
product in Rm resp. Rn. ✷

The following two exercises consider the discretization of the mixed problem (6.12). We stress
that a linear system similar to the one here, also appeared for the discretization of the Neumann
problem, where we had to realize the linear side constraint

∫
Ω uh dx = 0.

Exercise 60. Let a : X×X → R and b : X×Y → R be continuous bilinear forms on a Hilbert
space X and a reflexive Banach space Y . We replace X and Y by finite dimensional subspaces
Xh and Yh, respectively. Show that the computation of a discrete solution (xh, yh) ∈ Xh × Yh
of

a(xh, ·) + b(·, yh) = x∗ ∈ X∗h,
b(xh, ·) = y∗ ∈ Y ∗h ,

(6.20)

is equivalent to the solution of a linear system with a matrix of the type M :=

(
A BT

B 0

)
. ✷

Exercise 61. Let A ∈ Rn×n, B ∈ Rm×n, and M :=

(
A BT

B 0

)
. Assume that A is positive

definite on the kernel of B. Prove that M is regular if and only if range(B) = Rm. ✷

We conclude this section with an improved Céa lemma for saddle point problems; cf. Corol-
lary 6.9.

Theorem 6.10 (Céa Lemma for Saddle Point Problems, Version II). Let a : X×X →
R and b : X × Y → R be continuous bilinear forms on a Hilbert space X and a reflexive
Banach space Y . Given (x∗, y∗) ∈ X∗ × Y ∗, let (x, y) ∈ X × Y be a solution of the saddle
point problem (6.12). Let Xh ⊂ X and Yh ⊂ Y be finite dimensional subspaces and define
X0h :=

{
xh ∈ Xh

∣∣ b(xh, ·) = 0 ∈ Y ∗h
}
. Suppose that

• αh := inf
vh∈X0h\{0}

a(vh, vh)

‖vh‖2X
> 0,

• βh := inf
yh∈Yh\{0}

sup
xh∈Xh\{0}

b(xh, yh)

‖xh‖X‖yh‖Y
> 0.

Then, there is a unique solution (xh, yh) ∈ Xh × Yh of the discrete saddle point problem

a(xh, ·) + b(·, yh) = x∗ ∈ X∗h,
b(xh, ·) = y∗ ∈ Y ∗h ,

(6.21)
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and there holds

‖x− xh‖X ≤
(
1 +

‖a‖
αh

)(
1 +

‖b‖
βh

)
min

x̃h∈Xh

‖x− x̃h‖X +
‖b‖
αh

min
ỹh∈Yh

‖y − ỹh‖Y (6.22)

and

‖y − yh‖Y ≤
(
1 +

‖b‖
βh

)
min
ỹh∈Yh

‖y − ỹh‖Y +
‖a‖
βh

‖x− xh‖X . (6.23)

Sketch of Proof of Theorem 6.10. The unique existence of a discrete solution (xh, yh) ∈
Xh × Yh follows from the Brezzi Theorem 6.6 applied for Xh × Yh. The quasioptimality is proven
in three steps:

• First, we prove estimate (6.23).

• Second, we prove quasioptimality of ‖x− xh‖X with respect to the affine space Zh :=
{
x̃h ∈

Xh

∣∣ b(x̃h, ·) = y∗ ∈ Y ∗h
}
.

• In a final step, we estimate the bestapproximation error with respect to Zh by the bestap-
proximation error with respect to the entire discrete space Xh which then leads to (6.22).

This general concept even works for nonlinear problems with linear side constraint. �

Proof. We first note the Galerkin orthogonality, which now reads

a(x− xh, ·) + b(·, y − yh) = 0 ∈ X∗h,
b(x− xh, ·) = 0 ∈ Y ∗h ,

(6.24)

1. step. There holds

‖y − yh‖Y ≤
(
1 +

‖b‖
βh

)
‖y − ỹh‖Y +

‖a‖
βh

‖x− xh‖X for all ỹh ∈ Yh :

According to the definition of βh, there holds

βh ‖ỹh − yh‖Y ≤ sup
x̃h∈Xh\{0}

b(x̃h, ỹh − yh)

‖xh‖X
.

With the Galerkin orthogonality, the nominator may be written as

b(x̃h, ỹh − yh) = −
(
a(x− xh, x̃h) + b(x̃h, y − yh)

)
+ b(x̃h, ỹh − yh)

= −a(x− xh, x̃h) + b(x̃h, ỹh − y)

Therefore, continuity of a(·, ·) and b(·, ·) lead to

βh ‖ỹh − yh‖Y ≤ ‖a‖‖x − xh‖X + ‖b‖‖ỹh − y‖Y .

Altogether, a triangle inequality ‖y − yh‖Y ≤ ‖y − ỹh‖Y + ‖ỹh − yh‖Y yields step 1.
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2. step. With the affine space Zh :=
{
x̃h ∈ Xh

∣∣ b(x̃h, ·) = y∗ ∈ Y ∗h
}
, there holds

‖x− xh‖X ≤
(
1 +

‖a‖
αh

)
‖x− zh‖X +

‖b‖
αh

‖y − ỹh‖Y for all zh ∈ Zh and ỹh ∈ Yh :

Since xh, zh ∈ Zh, there holds xh − zh ∈ X0h. According to the definition of αh, we see

αh‖xh − zh‖2X ≤ a(xh − zh, xh − zh) = a(xh − x, xh − zh) + a(x− zh, xh − zh).

For the first term, the Galerkin orthogonality implies

a(xh − x, xh − zh) = b(xh − zh, y − yh) = b(xh − zh, ỹh − yh) + b(xh − zh, y − ỹh),

where the first summand b(xh − zh, ỹh − yh) = 0 drops out by use of xh − zh ∈ X0h. By continuity
of a(·, ·) and b(·, ·), we see

αh‖xh − zh‖X ≤ ‖a‖‖x− zh‖X + ‖b‖‖y − ỹh‖Y .

Again, a triangle inequality ‖x− xh‖X ≤ ‖x− zh‖X + ‖xh − zh‖X yields step 2.

3. step. There holds

‖x− zh‖X ≤
(
1 +

‖b‖
βh

)
‖x− x̃h‖X for all x̃h ∈ Xh and some zh ∈ Zh depending on x̃h :

We define Wh := (X0h)
⊥ ⊆ Xh and consider the operators B1 ∈ L(Wh, Y

∗
h ) and B2 ∈ L(Yh,W

∗
h )

defined by B1wh := b(wh, ·) and B2yh := b(·, yh). Note that

0 < βh = inf
ỹh∈Yh\{0}

sup
x̃h∈Xh\{0}

b(x̃h, ỹh)

‖x̃h‖X‖ỹh‖Y
= inf

ỹh∈Yh\{0}
sup

wh∈Wh\{0}

b(wh, ỹh)

‖wh‖X‖ỹh‖Y
.

According to Lemma 6.1, the operator B2 is injective with closed range and 1/βh = ‖B−12 :
range(B2) → Yh‖. From this, we derive that B1 = B∗2 ◦ IYh

is surjective due to range(B1) =
range(B∗2) = (kerB2)

◦ = Y ∗h . Note that by definition of Wh := (X0h)
⊥ ⊆ Xh, the operator B1 is

injective and thus an isomorphism between Wh and Y ∗h . In particular, this yields bijectivity of B2

as well as

‖B−11 ‖ = ‖I−1Yh
(B∗2)

−1‖ = ‖(B−12 )∗‖ = ‖B−12 ‖ = 1/βh.

In particular, there is a unique element wh ∈ Wh with b(wh, ·) = B1wh = b(x − x̃h, ·) ∈ Y ∗h and
there holds ‖wh‖X ≤ β−1h ‖b(x− x̃h, ·)‖X∗ ≤ (‖b‖/βh) ‖x− x̃h‖X . The element zh := x̃h +wh ∈ Xh

satisfies b(zh, ·) = b(x, ·) = y∗ ∈ Y ∗h and thus zh ∈ Zh. Now, we finally see

‖x− zh‖X ≤ ‖x− x̃h‖X + ‖wh‖X ≤
(
1 +

‖b‖
βh

)
‖x− x̃h‖X .

This concludes step 3.

4. step. The proof of (6.23) follows by finite dimension: Note that step 1 implies

‖y − yh‖Y ≤
(
1 +

‖b‖
βh

)
inf

ỹh∈Yh

‖y − ỹh‖Y +
‖a‖
βh

‖x− xh‖X ,
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and it only remains to see that the infimum is, in fact, attained: To that end, choose an infimizing
sequence (yk) in Yh, i.e.

lim
k→∞

‖y − yk‖Y = inf
ỹh∈Yh

‖y − ỹh‖Y .

According to the triangle inequality, there holds ‖yk‖Y ≤ ‖y‖Y + ‖y − yk‖Y , i.e. the sequence
(yk) is a bounded sequence in the finite dimensional space Yh. Thus, the Bolzano-Weierstrass
theorem yields the existence of a convergent subsequence (ykℓ) with limit y0 ∈ Yh. By continuity,
we conclude

inf
ỹh∈Yh

‖y − ỹh‖Y = lim
ℓ→∞

‖y − ykℓ‖Y = ‖y − y0‖Y .

5. step. The proof of (6.22) now follows from a combination of step 2 and step 3: For arbitrary
x̃h ∈ Xh, choose zh ∈ Zh by use of step 3. Let ỹh ∈ Yh and be arbitrary. We then infer

‖x− xh‖X ≤
(
1 +

‖a‖
αh

)
‖x− zh‖X +

‖b‖
αh

‖y − ỹh‖Y

≤
(
1 +

‖a‖
αh

)(
1 +

‖b‖
βh

)
‖x− x̃h‖X +

‖b‖
αh

‖y − ỹh‖Y .

Now, we take the infimum over x̃h and ỹh and note that, according to finite dimension, this infimum
is attained by independent minima. �

6.2.1 Discrete inf-sup conditions

Often, the continuous inf-sup condition is not that hard to prove, but the discrete one is the
problem. The next two lemmata provide a tool to derive the discrete inf-sup condition from the
continuous condition.

Lemma 6.11 (M. Fortin). Let b : X × Y → R denote a continuous bilinearform which
satisfies the continuous inf-sup condition

inf
06=λ∈Y

sup
06=u∈X

b(u, λ)

‖u‖X‖λ‖Y
≥ γ > 0. (6.25)

Let Xh ⊂ X and Yh ⊂ Y denote closed subspaces and let Π : X → Xh denote a linear mapping
with

b(u−Πu, λ) = 0 ∀λ ∈ Yh (6.26)

‖Πu‖X ≤ CΠ‖u‖X ∀u ∈ X. (6.27)

Then, there holds

inf
06=λ∈Yh

sup
06=u∈Xh

b(u, λ)

‖u‖X‖λ‖Y
≥ γN :=

γ

CΠ
> 0.
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Proof. Let λ ∈ Yh and note

γ‖λ‖Y
(6.25)

≤ sup
06=v∈X

b(v, λ)

‖v‖X
(6.26)
= sup

06=v∈X

b(Πv, λ)

‖v‖X
(6.27)

≤ CΠ sup
06=v∈X

b(Πv, λ)

‖Πv‖X
= CΠ sup

06=v∈rangeΠ

b(v, λ)

‖v‖X
≤ CΠ sup

06=v∈Xh

b(v, λ)

‖v‖X

�

Often, it is easier to generate the operator Π in two steps, as done in the following lemma.

Lemma 6.12. Let Πi : X → Xh, i = 1, 2 denote linear mappings with

‖Π1u‖X ≤ C1‖u‖X ∀u ∈ X

‖Π2(III −Π1)u‖X ≤ C2‖u‖X ∀u ∈ X

b(u−Π2u, λ) = 0 ∀λ ∈ Yh.

Then, (6.25) implies the discrete inf-sup condition

inf
06=λ∈Yh

sup
06=u∈Xh

b(u, λ)

‖u‖X‖λ‖Y
≥ γ

C1 + C2
.

Proof. Let λ ∈ Yh and define Π : X → Xh via Πu := Π2(III −Π1)u+Π1u. Then, we have

b(Πu, λ) = b(Π2(u−Π1u), λ) + b(Π1u, λ) = b(u−Π1u, λ) + b(Π1u, λ) = b(u, λ).

Moreover, there holds

‖Πu‖X ≤ ‖Π2(III −Π1)u‖X + ‖Π1u‖X ≤ (C1 + C2)‖u‖X .

This concludes the proof. �

6.3 The Stokes problem

6.3.1 Setting

We apply the general theory of saddle point-problems from the previous section to the Stokes
problem: Let Ω ⊂ R2 be a Lipschitz domain. Find u = (u1, u2) ∈ H1

0 (Ω) ×H1
0 (Ω) and p ∈ L2(Ω)

such that

−∆u+∇p = f in Ω (6.28a)

∇ · u = 0 in Ω (6.28b)

for given f = (f1, f2)
⊤ ∈ L2(Ω) × L2(Ω). Here, the operator −∆ is understood component wise,

i.e. ∆u = (∆u1,∆u2)
⊤.
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Remark. From a physical perspective, u denotes the velocity and p the pressure of a fluid in a case
where an equilibrium has been reached and the quantities do not depend on time anymore. The
incompressibility condition ∇·u = 0 implies that the fluid can not be compressed (e.g. water). The
equation −∆u+∇p = f describes conservation of momentum. The stationary Stokes problem (6.28)
stems from a severe simplification of the Navier-Stokes Equations and are physically meaningful
only in slow flowing fluids with high viscosity, e.g., honey. ✷

A weak form can be formulated as∫

Ω
∇u : ∇v −

∫

Ω
p∇ · v =

∫

Ω
fv ∀v ∈ (H1

0 (Ω))
2 (6.29a)

−
∫

Ω
q∇ · u = 0 ∀q ∈ L2(Ω). (6.29b)

Obviously, the pressure is unique only up to an additive constant and hence one usually chooses to
satisfy

∫
Ω p = 0. This motivates the choice of space

L2
⋆(Ω) := {p ∈ L2(Ω) |

∫

Ω
p = 0}. (6.30)

With this side-constraint, (6.29) is equivalent to the problem: Find (u, p) ∈ (H1
0 (Ω))

2×L2
⋆(Ω) such

that

a(u, v) + b(v, p) = x⋆(v) ∀v ∈ (H1
0 (Ω))

2 (6.31a)

b(u, q) = 0 ∀q ∈ L2
⋆(Ω), (6.31b)

where

a(u, v) =

∫

Ω
∇u : ∇v (6.32a)

b(v, p) = −
∫

Ω
p∇ · v (6.32b)

Existence of a unique solution for the Stokes problem results from Theorem 6.6 together with the
following theorem. (Note that the bilinearform a(u, v) satisfies a(u, u) = ‖∇u‖2L2(Ω) and is hence

elliptic.)

Theorem 6.13 (deRham). Let Ω be a Lipschitz domain and recall the bilinearform b(·, ·)
from (6.32). Then, there exists γ > 0 such that

inf
06=p∈L2

⋆(Ω)
sup

06=u∈(H1
0 (Ω))2

|b(v, u)|
‖p‖L2(Ω)‖v‖H1(Ω)

≥ γ > 0.

6.3.2 FEM for Stokes

The finite element method corresponding to (6.31) reads: For Xh ⊂ (H1
0 (Ω))

2 and Yh ⊂ L2
⋆(Ω) find

(uh, ph) ∈ Xh × Yh such that

a(uh, v) + b(v, ph) = x⋆(v) ∀v ∈ Xh (6.33a)

b(uh, q) = 0 ∀q ∈ Yh. (6.33b)
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From the abstract theory of saddle-point problems (particularly Theorem 6.6) we know that the
discrete spaces also need to satisfy an inf-sup condition, i.e.

inf
06=p∈Yh

sup
06=v∈Xh

b(v, p)

‖p‖L2(Ω)‖v‖H1(Ω)
≥ γh > 0. (6.34)

Particularly from the Céa Lemma for saddle-point problems (Theorem 6.10), we want to choose
discrete spaces which lead to the same rate of convergence

inf
v∈Xh

‖u− v‖H1(Ω), inf
q∈Yh

‖p − q‖L2(Ω).

This motivates the choice Xh = (S1
0 (T ))2 and Yh = P 0(T ) ∩ L2

⋆(Ω). However, this choice does not
satisfy a discrete inf-sup condition as we will show using a version of Euler’s formula for planar
graphs.

Theorem 6.14. Let T denote a regular triangulation of a simply connected domain Ω. Then,
there holds

#T = 2#(K ∩Ω) +#(K ∩ ∂Ω)− 2.

With this, we see

dim(Yh) = #T − 1 = 2#(K ∩ Ω) +#(K ∩ ∂Ω)− 3 = dim(Xh) + #(K ∩ ∂Ω)− 3.

Since #(K ∩ ∂Ω)− 3 > 0 for all meshes with more than one element, we see dim(Yh) > dim(Xh).
This contradicts the inf-sup condition (see also Proposition 6.4) and hence this discretization does
not lead to regular linear systems.

In the following, we discuss a couple of valid choices of discrete spaces.

Theorem 6.15 (Taylor-Hood-type element). Let T denote a regular triangulation of
Ω. Let

Xh :=
(
S2
0 (T )

)2
, Yh := P 0(T ) ∩ L2

⋆(Ω).

Then, there exists a constant γ > 0, which depends only on the shape regularity of T such that

inf
06=p∈Yh

sup
06=u∈XM

b(u, p)

‖p‖L2(Ω)‖u‖H1(Ω)
≥ γ > 0.

Proof. We apply Lemma 6.12. For that, we choose Π1 : (H1
0 (Ω))

2 → (S1
0 (T ))2 ⊂ Xh as the

Scott-Zhang interpolation operator (or any Clément operator). Particularly, this shows

‖u−Π1u‖L2(T ) ≤ ChT ‖u‖H1(ΩT ) ∀T ∈ T ,
‖Π1u‖H1(Ω) ≤ C‖u‖H1(Ω).

The operator Π2 is defined elementwise via

Π2u ∈ (S2
0 (T ))2 (6.35a)

(Π2u)(V ) = 0 ∀V ∈ N (T ) (6.35b)∫

e
Π2u− u = 0 ∀e ∈ E(T ). (6.35c)
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Obviously, Π2 is a well-defined linear operator. Moreover, a scaling argument shows for all T ∈ T
that

‖Π2u‖2L2(T ) ≤ Ch2T ‖(Π2u) ◦ ΦT‖2L2(Tref )
≤ Ch2T ‖u ◦ΦT ‖2L2(∂Tref )

≤ Ch2T ‖u ◦ΦT ‖2H1(Tref )

= Ch2T

[
‖u ◦ΦT ‖2L2(Tref )

+ ‖∇u ◦ ΦT ‖2L2(Tref )

]

≤ C‖u‖2L2(T ) + Ch2T ‖∇u‖2H1(T ), as well as

‖∇Π2u‖2L2(T ) ≤ C‖∇(Π2u) ◦ ΦT ‖2L2(Tref )
≤ C‖∇(Π2u) ◦ΦT ‖2L2(Tref )

≤ · · · ≤ C
[
h−2T ‖u‖2L2(T ) + ‖∇u‖2H1(T )

]
.

Altogether, this shows

‖Π2u‖H1(T ) ≤ C
[
h−1T ‖u‖L2(T ) + |u|H1(KT )

]
∀u ∈ (H1(T ))2.

This implies

‖Π2(III −Π1)u‖H1(T ) ≤ Ch−1T ‖u−Π1u‖L2(T ) + C‖u−Π1u‖H1(T ) ≤ C‖u‖H1(Ω̃T ).

Summing up over all T ∈ T shows ‖Π2(III −Π1)u‖H1(Ω) ≤ C‖u‖H1(Ω).
For p ∈ Yh und u ∈ (H1

0 (Ω))
2, we obtain

b(u−Π2u, p) =
∑

T∈T

∫

p
∇ · (u−Π2u) =

∑

T∈T

∫

∂T
p(u−Π2u) · nT

︸ ︷︷ ︸
=0by construction of Π2

−
∫

T
∇p︸︷︷︸
=0

(u−Π2u) = 0.

�

Theorem 6.16 (MINI-Element). Let T a regular triangulation of Ω. Let B3 :=
{u ∈ H1(Ω) |u|T ◦ ΦT ∈ span{b3}}, where b3 is the cubic element bubble function b3(x, y) :=
xy(1− x− y) on the reference triangle Tref . Let

Xh :=
(
S1
0 (T ) +B3

)2
, Yh := S1(T ) ∩ L2

⋆(Ω).

Then, there exists a constant γ > 0, which depends only on the shape regularity of T such that

inf
06=p∈Yh

sup
06=u∈XM

b(u, p)

‖p‖L2(Ω)‖u‖H1(Ω)
≥ γ > 0.

Proof. Again, we use 6.12. Let Π1 denote again the Scott-Zhang operator. The operator Π2

is defined elementwise as follows: The bubble-functions bT := b3 ◦ Φ−1T satisfy supp bT ⊂ T und
B3 = span{bT |T ∈ T }. We define

Π2u|T :=
1∫

T bT
bT

( ∫
T u1∫
T u2

)
,

with u = (u1, u2). Then, there holds

Π2 : (H
1
0 (Ω))

2 → B2
3 is a linear operator

‖Π2u‖L2(T ) ≤ C‖u‖L2(T ) ∀T ∈ T
‖Π2u‖H1(T ) ≤ Ch−1T ‖u‖L2(T ) ∀T ∈ T .
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Analogously to the proof of Theorem 6.15, we obtain ‖Π2(III −Π1)u‖H1(Ω) ≤ C‖u‖H1(Ω). Moreover,
for p ∈ S1(T ):

b(u−Π2u, p) =

∫

Ω
p∇ · (u−Π2u) =

∫

∂Ω
p(u−Π2u)

︸ ︷︷ ︸
=0 due to boundary condition

−
∫

Ω
∇p · (u−Π2u)

=
∑

T∈T

∫

K
∇p|T︸ ︷︷ ︸

=constant

·(u−Π2u)
by construction of Π2

= 0

�

The most widely used discretization for Stokes is the following Tayler-Hood element.

Theorem 6.17 (Taylor-Hood). Let T denote a regular triangulation such that each
element T ∈ T has at most one edge on ∂Ω. Define

Xh :=
(
S2
0 (T )

)2
, Yh := S1(T ) ∩ L2

⋆(Ω).

Then, there exists a constant γ > 0 which depends only on the shape regularity of T such that

inf
06=p∈Yh

sup
06=u∈XM

b(u, p)

‖p‖L2(Ω)‖u‖H1(Ω)
≥ γ > 0.

6.4 Further remarks on mixed methods

Mixed methods can be useful if a direct discretization of a problem is difficult. We demonstrate
this for the biharmonic equation:

∆2u = f in Ω, (6.36a)

u = 0 on ∂Ω (6.36b)

∂nu = 0 on ∂Ω (6.36c)

The classical weak form of the biharmonic equation is

Find u ∈ H2
0 (Ω) such that

∫

Ω
∆u∆v =

∫

Ω
fv ∀v ∈ H2

0 (Ω). (6.37)

To derive a FEM for the above problem, we need to choose discrete subspaces Xh ⊆ H2
0 (Ω). Note

that the standard spaces Sp
0 6⊂ H2(Ω) do not work. By ensuring C1-regularity over element in-

terfaces, it is possible to construct piecewise polynomial spaces which are subspaces of H2(Ω) (for
example the Argyris-element or the Hsieh-Clough-Tocher-element). However, such an implemen-
tation is complicated and not very popular among users. It is easier to change the weak form.
To that end, we introduce a new variable σ = −∆u. This leads to the following problem: Find
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(u, σ) ∈ H1
0 (Ω)×H1(Ω) such that

∫

Ω
∇σ · ∇w =

∫

Ω
fw ∀w ∈ H1

0 (Ω), (6.38a)

∫

Ω
∇u · ∇v −

∫

Ω
σv = 0 ∀v ∈ H1(Ω) (6.38b)

Without looking into the solution theory of the mixed FEM, we note that we want to find (u, σ) ∈
H1

0 (Ω) × H1(Ω). Hence, we only need to choose finite dimensional subspaces of H1
0 (Ω) ×H1(Ω),

which can be done by using classical polynomial spaces.

6.5 The G̊arding inequality

Often, an elliptic problem is perturbed by a lower order term such that the resulting problem is no
longer elliptic but satisfies a G̊arding inequality.

Definition. Let X0, X1 denote Hilbert spaces with compact embedding X1 ⊂ X0. A bilinearform
a : X1 ×X1 → R satisfies a G̊arding inequality if there exist constants C0, C1 > 0 with

a(u, u) ≥ C1‖u‖2X1
− C0‖u‖2X0

∀u ∈ X1.

Problems which satisfy a G̊arding inequality arise for example if one considers PDEs with lower
order terms.

Exercise 62. Consider

−∆u− b(x) · ∇u+ c(x)u = f in Ω,

u = 0 on ∂Ω

Show that the corresponding bilinear form satisfies a G̊arding inequality with X1 = H1
0 (Ω) and

X0 = L2(Ω). ✷

We use the following result from functional analysis:

Exercise 63. Let X, Y denote Banach spaces and let K : X → Y be a compact operator. Let
(ΠN )N∈N a sequence of linear operators ΠN : Y → Y with ‖ΠN‖ ≤ 1 and ΠN → Id pointwise
(i.e. limN→∞ΠNu = u for all u ∈ Y ). Then, there holds

lim
N→∞

‖(Id−Πh)K‖Y←X = 0.

✷

For well-posed problems (i.e. the continuous equation has a unique solution) with G̊arding
inequality, the following result shows that their discretization is asymptotically quasi-optimal.

Theorem 6.18. Let X1, X0 be Hilbert spaces with compact embedding X1 ⊂ X0. Let
a(·, ·) satisfy a G̊arding inequality and let the induced operator A : X1 → X ′1, Au := a(u, ·) be
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bijective. Let (Xh)h>0 ⊂ X1 denote a sequence of closed subspaces such that

lim
h→0

inf
v∈Xh

‖u− v‖X1 = 0 ∀u ∈ Xh.

Then, there exists h0 > 0 and γ > 0 such that for all 0 < h < h0

inf
u∈Xh

sup
v∈Xh

a(u, v)

‖u‖X1‖v‖X1

≥ γ > 0.

In particular, there holds for the FEM error

‖u− uh‖X1 ≤
(
1 +

‖a‖
γ

)
inf

v∈Xh

‖u− v‖X1

Proof. Step 1: We show that there exists C̃ > 0 such that for all u ∈ X1 we find v ∈ X1 of the
form v = u+ z such that

a(u, v) = a(u, u+ z) ≥ C1‖u‖2X1
(6.39)

‖v‖X1 ≤ C̃‖u‖X1 . (6.40)

The choice of z is motivated by the G̊arding inequality a(u, u) ≥ C1‖u‖2X1
− C0‖u‖2X0

, i.e

a(u, u+ z) = a(u, u) + a(u, z) ≥ C1‖u‖2X1
− C0‖u‖2X0

+ a(u, z).

Hence, we choose z ∈ X1 as solution of the (adjoint) problem

Find z ∈ X1 s.t. a(w, z) = C0〈w, u〉X0 ∀w ∈ X1

In operator notation, this reads as
A⊤z = Ku,

where A : X1 → X ′1 is induced by the bilinearform a(·, ·) and K : X1 → X ′1 is defined via

〈·,Ku〉X1×X′
1
= 〈·, C0u〉X0 .

We note that

(i) Since A is bijective, also A⊤ bijective and ‖A−⊤‖ = ‖A−1‖.

(ii) Since X1 ⊂ X0 is compact, also K : X1 → X ′1 is a compact operator.

The operator A−⊤K : X1 → X1, which maps u to z is compact. We obtain

a(u, v) = a(u, u+ z) ≥ C1‖u‖2X1

‖v‖X1 ≤ ‖u‖X1 + ‖z‖X1 ≤
(
1 + ‖A−⊤K‖

)
‖u‖X1 .

Step 2: For given u ∈ Xh, we construct v ∈ Xh such that

a(u, v) ≥ C1

2
‖u‖2X1

‖v‖X1 ≤ C̃‖u‖X1
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Let Πh : X1 → Xh denote the orthogonal projection (in X1). Following Step 1, we define v =
u+Πhz ∈ Xh for given u ∈ Xh. This shows

a(u, v) = a(u, u+ z) + a(u,Πhz − z) ≥ C1‖u‖2X1
− ‖a‖‖u‖X1‖(Id−Πh)z‖X1

≥ C1‖u‖2X1
− ‖a‖X1‖(Id−Πh)A

−⊤K‖‖u‖2X1

SinceK is compact andA−⊤ bounded, also their composition is compact. Since Id−Πh converges to
zero pointwise (according to the assumption), we obtain with Exercise 63 that limh→0 ‖(Id−Πh)A

−⊤K‖ =
0. Hence, there exists h0 > 0 (independently of u) such that all 0 < h < h0 satisfy

a(u, u+Πhz) ≥
C1

2
‖u‖2X1

.

Furthermore, v = u+Πhz ∈ Xh satisfies

‖v‖X1 ≤ ‖u‖X1 + ‖Πhz‖X1 ≤ ‖u‖X1 + ‖z‖X1 ≤ (1 + ‖A−⊤K‖)‖u‖X1 .

Step 3: This shows the discrete inf-sup condition. Quasi-optimality follows from the Céa lemma. �

A bilinear form which satisfies a G̊arding inequality does not necessarily induce a bijective operator.
A famous result from functional analysis states however, that injectivity implies already bijectivity.

Theorem 6.19 (Fredholmalternative). Let a denote a bounded bilinearform on the
Hilbertspace X1, which satisfies a G̊arding inequality. Let the induced operator A : X1 → X ′1
be injective, i.e.

a(u, v) = 0 ∀v ∈ X1 =⇒ u = 0.

Then, A is already bijective.

Proof. The G̊arding inequality states

a(u, u) ≥ C1‖u‖2X1
− C0‖u‖2X0

Consider ã : X1 ×X1 → R defined by

ã(u, v) := a(u, v) +C0〈u, v〉X0

Due to the Lax-Milgram Lemma ã(·, ·) induces a bijective operator Ã : X1 → X ′1. The difference

K := Ã−A : X1 → X ′1 is compact since

〈Ku, v〉X′
1×X1

= C0〈u, v〉X0

and X1 ⊂ X0 is compact. Hence A reads as

A = Ã−K = Ã
(
Id−Ã−1K

)
.

The injectivity of A implies that 1 is not an Eigenvalue of the compact operator Ã−1K. The theory
of compact operators shows that this implies that Id−Ã−1K is invertible and hence A is bijective.
�
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Appendix A

Some Facts from Functional Analysis

I this appendix we collect some results from introductory functional analysis courses which are used
throughout. We stick with the case of vector spaces over R.

A.1 Main Theorems from Functional Analysis

Theorem A.1 (Hahn-Banach Extension Theorem). Let p : X → R be a sublinear
functional on a linear space X, i.e. p(x+ y) ≤ p(x) + p(y) and p(λx) = λp(x) for all x, y ∈ X
and λ ≥ 0. If Y is a subspace of X and f : Y → R is a linear functional with f ≤ p on Y ,
there is a linear extension F : X → R with F |Y = f and F ≤ p on X. �

If X is a normed space and f ∈ Y ∗, one may choose p(x) = ‖x‖X‖f‖X∗ to prove the extension
theorem for continuous linear functionals.

Corollary A.2. If Y is the subspace of a normed space X and f ∈ Y ∗, there is an extension
F ∈ X∗ with F |Y = f and ‖F‖X∗ = ‖f‖Y ∗ . �

One then considers the subspace Y := span{x} and f(λx) = λ‖x‖X to derive the following
corollary:

Corollary A.3. If X is a normed space and x ∈ X, there is a linear functional f ∈ X∗ with
‖f‖X∗ = 1 and f(x) = ‖x‖X = sup

‖f‖X∗=1
|f(x)|. �

Theorem A.4 (Hahn-Banach Separation Theorem). Let X be a normed space, and
let A and B be convex, nonempty subsets of X with A ∩B = ∅.
(i) If A is open, there is a linear functional f ∈ X∗ and a scalar λ ∈ R such that f(x) < λ ≤
f(y) for all x ∈ A and y ∈ B.
(ii) If A is compact and B is closed, there is a linear functional f ∈ X∗ and scalars λ1, λ2 ∈ R
such that f(x) ≤ λ1 < λ2 ≤ f(y) for all x ∈ A and y ∈ B. �

If Y is a subspace of X, one can use (ii) to characterize the closure Y of Y in X. The proof
only needs that each bounded linear functional f ∈ Y ∗ is trivial, i.e. f |Y = 0.
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Corollary A.5. Let Y be a subspace of the normed space X. Then, x ∈ X satisfies x ∈ Y if
and only if f(x) = 0 for all f ∈ X∗ with f |Y = 0.

Proof. For x ∈ Y and f ∈ X∗ with f |Y = 0, continuity yields f(x) = 0. The converse implication
is proven by contradiction: We assume that x 6∈ Y and choose f ∈ X∗ such that f(x) < λ ≤ f(y)
for all y ∈ Y and some fixed λ ∈ R. Using that Y is a vector space, we infer that λ ≤ f(±y) =
−f(∓y) ≤ −λ and thus f(y) ∈ [λ,−λ] for all y ∈ Y . As bounded linear functionals are trivial,
we obtain f |Y = 0. According to our assumptions, this implies f(x) = 0 and thus contradicts
f(x) < λ ≤ f(0) = 0. �

The following corollary is an immediate consequence of the last one.

Corollary A.6. Let Y be a subspace of the normed space X. Then, Y is dense in X if and
only if each functional f ∈ X∗ with f |Y = 0 is trivial, i.e., f = 0 ∈ X∗. �

For an operator T ∈ L(X;Y ), one defines (T ∗y∗)(x) := y∗(Tx) for all y∗ ∈ Y ∗ and x ∈ X.
From the continuity of T , we see that T ∗y∗ ∈ X∗, and obviously T ∗ : Y ∗ → X∗ is a linear operator.
From the corollary of the Hahn-Banach extension theorem, we derive for the operator norm

‖T ∗‖ = sup
‖y∗‖Y ∗=1

‖T ∗y∗‖X∗ = sup
‖y∗‖Y ∗=1

sup
‖x‖X=1

(T ∗y∗)(x)

= sup
‖x‖X=1

sup
‖y∗‖Y ∗=1

(y∗)(Tx) = sup
‖x‖X=1

‖Tx‖Y = ‖T‖,

i.e. there holds T ∗ ∈ L(Y ∗;X∗) with operator norm ‖T ∗‖ = ‖T‖. The operator T ∗ is called the
adjoint operator of T .

Theorem A.7 (Banach Closed Range Theorem). For an operator T ∈ L(X;Y )
between Banach spaces X and Y and T ∗ ∈ L(Y ∗;X∗) its adjoint, the following is pairwise
equivalent:
(i) range(T ) is a closed subspace of Y .
(ii) range(T ) = (ker T ∗)◦ :=

{
y ∈ Y

∣∣∀y∗ ∈ ker(T ∗) y∗(y) = 0
}
.

(iii) range(T ∗) is a closed subspace of X∗.
(iv) range(T ∗) = (ker T )◦ :=

{
x∗ ∈ X∗

∣∣∀x ∈ ker(T ) x∗(x) = 0
}
. �

A.2 Hilbert Spaces

A space X is called Hilbert space if it is a Banach space whose norm is induced by a scalar
product.

Theorem A.8. Let Y be the closed subspace of a Hilbert space X and Y ⊥ :=
{
x ∈ X

∣∣∀y ∈
Y (x ; y)X = 0

}
the orthogonal complement. Then, there holds X = Y ⊕ Y ⊥ in the sense of

the linear algebra, i.e. every element x ∈ X has a unique decomposition x = y+ y⊥ with some
y ∈ Y and y⊥ ∈ Y ⊥. �
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APPENDIX A. SOME FACTS FROM FUNCTIONAL ANALYSIS

With the orthogonal decomposition X = Y ⊕ Y ⊥, one can define a projection πY : X → Y by
x = y + y⊥ 7→ y.

Corollary A.9. Let Y be the closed subspace of a Hilbert space X. Then, there is a unique
linear operator Π : X → Y with Π|Y = id and ker(Π) = Y ⊥, which is called orthogonal
projection onto Y . This projection is continuous with operator norm ‖Π‖ = 1 and symmetric,
i.e. (x ; y)X = (Πx ; y)X for all x ∈ X and y ∈ Y . Moreover, the orthogonal projection is the
solution operator for the best approximation problem, ‖x−Πx‖X = min

y∈Y
‖x− y‖X . �

The dual space X∗ of a Hilbert space X has a straight-forward representation, and one can
somehow identify X with X∗.

Theorem A.10 (Riesz). For a Hilbert space X, the Riesz mapping IX : X → X∗,
IXx := (x ; ·)X ∈ X∗, is an isometric isomorphism. �
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