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1. High dimensional quadrature

This section is largely based on [3]. Integration in high-dimensions is very important
for applications in finance (computing expectations), physics (Schrödinger equation), and
other fields. We consider integration on the unit cube [0, 1]s, for some s ∈ N. Hence, we
would like to approximate

Is(f) :=

∫
[0,1]s

f(x) dx :=

∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xs) dx1 · · · dxs

in the case where s ∈ N is large, possibly in the hundreds or thousands.

1.1. The problem with tensor-quadrature. In classical numerical analysis, one would
approximate

∫ 1

0
f(x) dx ≈

∑n
i=1wif(zi) for some (Gauss)-quadrature points z1, . . . , zn.

To obtain a quadrature rule for the multi-dimensional integral, the standard way forward
is to use tensor quadrature, i.e.,

Is(f) ≈ Tn(f) :=
n∑

i1=1

· · ·
n∑

is=1

wi1wi2 · · ·wisf(zi1 , . . . , zis).

Under some assumptions on the regularity of f , we can prove that the error satisfies

|Is(f)− Tn(f)| ≲ n−r∥f∥Cr([0,1]s).

However, in terms of number of evaluations N of f , the rate of convergence looks less
impressive, i.e.,

|Is(f)− Tn(f)| ≲ N−r/s∥f∥Cr([0,1]s),

since we have N = ns tensor points zi := (zi1 , . . . , zis) for all i ∈ {1, . . . , n}s. The
convergence rate depends on the dimension of the problem.

1.2. Monte Carlo quadrature. The classical Monte Carlo (MC) method is an equal-
weight quadrature rule of the form

Qn(f) :=
1

n

n−1∑
i=0

f(xi),

where x0, . . . ,xn−1 are i.i.d. uniform random samples from [0, 1]s.

Theorem 1. For all f ∈ L2([0, 1]s), the root-mean squared error satisfies√
E(|Is(f)−Qn(f)|2) =

√
Var(f)n−1/2,

where Var(f) = Is(f
2)−Is(f)2. Here, the expectation is taken with respect to the uniform

random samples x0, . . . ,xn−1.

Proof. We have

E(|Is(f)−Qn(f)|2) = E(Is(f)2)− 2E(Qn(f)Is(f)) + E(Qn(f)
2).

Obviously, we have E(Is(f)2) = Is(f)
2 and E(Qn(f)Is(f)) = E(Qn(f))Is(f). Moreover,

there holds

E(Qn(f)) =
1

n

n−1∑
i=0

E(f(xi)) =
1

n

n−1∑
i=0

∫
[0,1]s

f(x) dx = Is(f)
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as well as

E(Qn(f)
2) =

n−1∑
i,j=0

E(f(xi)f(xj))

=
1

n2

( n−1∑
i=0

E(f(xi)
2) +

∑
i ̸=j

E(f(xi))E(f(xj))
)

=
1

n2

( n−1∑
i=0

Is(f
2) +

∑
i ̸=j

Is(f)
2
)
=

1

n
Is(f

2) +
n− 1

n
Is(f)

2.

Altogether, this shows

E(|Is(f)−Qn(f)|2) =
Is(f

2)− Is(f)
2

n

and hence we conclude the proof. □

We note that the convergence rate of the error is independent of the dimension s ∈ N
and (almost) independent of the smoothness of the integrand f . For f ∈ C2([0, 1]s), the
tenor trapezoidal rule achieves a convergence rate of N−2/s. This means that for s > 4,
the MC method is actually faster than the tensor quadrature.

1.3. Quasi-Monte Carlo quadrature. The MC method is the best method for low
regularity integrands. In fact, Bakhvalov (1959) proved that the rate O(n−1/2) can not
be improved for f ∈ L2([0, 1]s). On the other hand, the MC method will not benefit of
more regular integrands. Hence, we want to discuss quasi-Monte Carlo methods (QMC).

QMC methods are equal weight quadrature rules of the form

Qn(f) :=
1

n

n−1∑
i=0

f(zi)

for some (deterministically chosen) points z0, . . . ,zn−1 ∈ [0, 1]s. In the following, we will
develop an error analysis for those QMC rules. The main difference to the classical error
analysis of quadrature problems is, that we do not bootstrap the interpolation problem,
i.e., the fact that quadrature is not harder than interpolation is used to develop Gaussian
quadrature rules for example. However, it turns out that in higher dimensions, quadrature
is much easier than interpolation.

Definition 2 (reproducing kernel Hilbert space). Let X be a Hilbert space of functions
f : O → R for an arbitrary set O equipped with the vector space structure of pointwise
addition and scalar multiplication. If the functionals Lx : X → R, Lx(f) := f(x) are
bounded for all x ∈ O, then X is called a reproducing kernel Hilbert space (RKHS).

Lemma 3. If X is a RKHS, then there exists a unique function K : O × O → R (the
kernel) such that

(i) K(·,x) ∈ X for all x ∈ O,
(ii) f(x) = ⟨f , K(·,x)⟩X for all f ∈ X and all x ∈ O (the reproducing property).
(iii) K(·, ·) is symmetric, i.e., K(x,y) = K(y,x) for all x,y ∈ O.
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(iv) K(·, ·) is positive semidefinite, i.e., for all n ∈ N, µ1, . . . , µn ∈ R, and x1, . . . ,xn ∈
O, there holds

n∑
i,j=1

µiµjK(xi,xj) ≥ 0.

(v) The set span{K(·,x) : x ∈ O} is dense in X .

Moreover, if a function K : O × O → R satisfies (iii)–(iv), there exists a unique RKHS
X with kernel K.

Proof. Since Lx is bounded by definition, we find a Riesz representer Kx ∈ X such that
Lx(·) = ⟨Kx , ·⟩X . We may define K(x,y) := ⟨Kx , Ky⟩X and see (iii) immediately.
Moreover, we have K(·,y) = (x 7→ K(x,y)) = (x 7→ ⟨Kx , Ky⟩X ) = (x 7→ Ky(x)) and
hence K(·,y) ∈ X , i.e. (i). The same argument also shows ⟨f , K(·,x)⟩X = ⟨f , Kx⟩X =
f(x), i.e. (ii). Positive semi-definiteness (iv) follows from

n∑
i,j=1

µiµjK(xi,xj) =
n∑

i,j=1

µiµj⟨Kxi
, Kxj

⟩X = ⟨
n∑

i=1

µiKxi
,

n∑
i=1

µiKxi
⟩X ≥ 0,

since ⟨· , ·⟩X is positive definite. The uniqueness of the kernel follows from (ii) and the
fact that Riesz representers are unique. To see (v), we consider a function f ∈ X with
f ⊥ span{K(·,x) : x ∈ O}, i.e., ⟨f , K(·,x)⟩X = 0 for all x ∈ O. This implies f(x) = 0
for all x ∈ O and hence f = 0. The fact that (iii)–(iv) imply the existence of a RKHS is
a consequence of the Moore–Aronszajn theorem [1]. □

In the following, we will consider the Kernel

Ks(x,y) :=
s∏

j=1

(2−max{xj, yj})

inducing the RKHS Xs and show that the corresponding inner product is given by

⟨f , g⟩Xs :=
∑

u⊆{1,...,s}

∫
[0,1]|u|

∂xuf(xu; 1)∂xug(xu; 1) dxu,

where (xM ; 1) is a shorthand for the vector x̃ ∈ Rs defined by x̃j = xj for j ∈ u and x̃j = 1
for j /∈ u. Moreover u = ∅ is interpreted as the point evaluation

∫
[0,1]|∅|

∂x∅f(x∅; 1)∂x∅g(x∅; 1) dx∅ :=

f(1)g(1) with 1 := (1, . . . , 1) ∈ [0, 1]s.

Lemma 4. Xs is a RKHS with kernel Ks(·, ·) that contains all functions f : [0, 1]s → R
such that ⟨f , f⟩Xs <∞.

Proof that Xs is a RKHS. First, we check that ⟨· , ·⟩Xs induces a Hilbert space. Lets
define Xs as the set of all functions f : [0, 1]s → R such that ⟨f , f⟩Xs < ∞. On Xs, we
immediately see that ⟨· , ·⟩Xs is bilinear, symmetric, and positive semi-definite. To see
definiteness, we first show by induction on s for f ∈ Xs and x ∈ [0, 1]s that

f(x) =
∑

u⊆{1,...,s}

(−1)|u|
∫
∏

j∈u[xj ,1]

∂xuf(xu; 1) dxu. (1)
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For s = 1, we have f(x) = f(1)−
∫ 1

x
∂xf(y) dy and hence confirm (1). Assume (1) holds

for s− 1. Then, we have

f(x) = f(x1, . . . , xs−1, 1)−
∫ 1

xs

∂xsf(x1, . . . , xs−1, y) dy

=
∑

u⊆{1,...,s−1}

(
(−1)|u|

∫
∏

j∈u[xj ,1]

∂xuf(xu; 1) dxu − (−1)|u|
∫ 1

xs

∫
∏

j∈u[xj ,1]

∂xuf((xu; 1), y) dxu dy
)

=
∑

u⊆{1,...,s}

(−1)|u|
∫
∏

j∈u[xj ,1]

∂xuf(xu; 1) dxu

which confirms (1) for s. With (1) at hand, we immediately see that ⟨f , f⟩Xs = 0 implies
f(x) = 0 for all x ∈ [0, 1]s and hence f = 0. This shows definiteness of ⟨· , ·⟩Xs and hence
confirms that Xs is a Hilbert space. Moreover, (1) shows that f 7→ f(x) is a bounded by

the norm ⟨f , f⟩1/2Xs
and hence Xs is a RKHS by Definition 2. □

Proof that Ks(·, ·) is the kernel of Xs. First, we compute

∂xuKs(x,y) = ∂xu

s∏
j=1

(2−max{xj, yj}) =
∏
j∈u

−1{xj≥}(yj) = (−1)|u|
∏
j∈u

1{xj≥}(yj),

where 1{·} denotes the indicator function of the set {·}. This shows immediately that
Ks(·,y) ∈ Xs for all y ∈ [0, 1]s. It remains to check that ⟨f , K(·,y)⟩Xs = f(y), i.e.,

f(y) =
∑

u⊆{1,...,s}

(−1)|u|
∫
[0,1]|u|

∂xuf(xu; 1)
∏
j∈u

1{xj≥}(yj) dxu

=
∑

u⊆{1,...,s}

(−1)|u|
∫
∏

j∈u[yj ,1]

∂xuf(xu; 1) dxu.

(2)

This, however, is exactly the identity (1). Hence, Ks(·, ·) is the unique kernel of Xs. □

1.4. The worst case error. Given a point set P ⊂ [0, 1]s with |P | = n, the worst-case
error of the QMC rule Qn(f) defined by the set P is defined by

en(P,X ) := sup
∥f∥X≤1

|Is(f)−Qn(f)|.

By linearity of the quadrature, we obtain immediately

|Is(f)−Qn(f)| ≤ en(P,X )∥f∥X .
In a RKHS, the worst case error is actually easy to compute.

Theorem 5. Let K : [0, 1]s × [0, 1]s → R be a reproducing kernel that satisfies∫
[0,1]s

√
K(x,x) dx <∞.

Then, there holds for the induced RKHS X that

e2n(P,X ) =

∫
[0,1]s

∫
[0,1]s

K(x,y) dx dy − 2

n

∑
z∈P

∫
[0,1]s

K(z,y) dy

+
1

n2

∑
z∈P

∑
z′∈P

K(z, z′),

where for the case n = 0, only the first term remains.
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Proof. The reproducing kernel property shows for f ∈ X

1

n

∑
z∈P

f(z) =
1

n

∑
z∈P

⟨f , K(·, z)⟩X = ⟨f , 1
n

∑
z∈P

K(·, z)⟩X .

Next, we show that f 7→ Is(f) is a bounded linear operation on X . To that end, observe

|Is(f)| =
∣∣∣ ∫

[0,1]s
⟨K(·,x) , f⟩X dx

∣∣∣ ≤ ∥f∥X
∫
[0,1]s

∥K(·,x)∥X dx.

Since ∥K(·,x)∥2X = ⟨K(·,x) , K(·,x)⟩X = K(x,x), the assumption in the statement of
the theorem shows

∫
[0,1]s

∥K(·,x)∥X dx <∞ and hence proves boundedness of f 7→ Is(f).

Thus, we find a representer R ∈ X with Is(f) = ⟨R , f⟩X for all f ∈ X . This representer
can be characterized easily with the reproducing property of K, i.e.

R(y) = ⟨R , K(·,y)⟩X = Is(K(·,y)) =
∫
[0,1]s

K(x,y) dx.

Hence, we obtain

Is(f) =

∫
[0,1]s

f(x) dx = ⟨f ,
∫
[0,1]s

K(x, ·) dx⟩X .

Subtraction of the identities for Is(f) and Qn(f) reveals

Is(f)−Qn(f) = ⟨f ,
∫
[0,1]s

K(·,x) dx− 1

n

∑
z∈P

K(·, z)⟩X = ⟨f , ζ⟩X ,

where ζ(y) :=
∫
[0,1]s

K(y,x) dx− 1
n

∑
z∈P K(y, z) is the error representer. Hence, en(P,X ) =

∥ζ∥X by definition. Computing the norm

∥ζ∥2X =

∫
[0,1]s

∫
[0,1]s

⟨K(·,x) , K(·,x′)⟩X dx dx′

− 2

n

∑
z∈P

∫
[0,1]s

⟨K(·,x) , K(·, z)⟩X dx

+
1

n2

∑
z,z′∈P

⟨K(·, z′) , K(·, z)⟩X dx

concludes the proof.
□

Using the formula from the previous Theorem, a lengthy but straighforward computa-
tion shows that the kernel Ks(·, ·) from above admits the worst case error

e2n(P,Xs) =
(4
3

)s

− 2

n

∑
z∈P

s∏
j=1

(3− z2j
2

)
+

1

n2

∑
z,z′∈P

s∏
j=1

(2−max{zj, z′j}).

1.5. Geometric discrepancy. In the proof of Theorem 5, we derived the estimate

|Is(f)−Qn(f)| = |⟨f , ζ⟩X |, (3)
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where for X = Xs, the error representer ζ takes the form

ζ(y) =

∫
[0,1]s

K(y,x) dx− 1

n

∑
z∈P

K(y, z)

=
s∏

j=1

(3− y2j
2

)
− 1

n

∑
z∈P

s∏
j=1

(2−max{yj, zj}),

where P is the QMC point-set and y ∈ [0, 1]s. We may compute the first mixed partial
derivatives for any subset u ⊆ {1, . . . , s}

∂xuζ(xu; 1) = (−1)|u|
(∏

j∈u

xj −
1

n

∑
z∈P

∏
j∈u

1{≥zj}(xj)
)
.

With the local discrepancy function ∆P in s-dimensions

∆P (x) :=
1

n

∑
z∈P

s∏
j=1

1{≥zj}(xj)−
s∏

j=1

xj,

we may write

∂xuζ(xu; 1) = (−1)|u|+1∆P (xu; 1).

Since we already know the scalar product ⟨· , ·⟩Xs , we obtain from (3)

|Is(f)−Qn(f)| =
∣∣∣ ∑
u⊆{1,...,s}

(−1)|u|
∫
[0,1]|u|

∂xuf(xu; 1)∆P (xu; 1) dxu

∣∣∣.
Thus, by application of Hölder’s inequality, we obtain the following theorem:

Theorem 6 (Koksma-Hlawka inequality). There holds

|Is(f)−Qn(f)| ≤
( ∑

u⊆{1,...,s}

(∫
[0,1]|u|

∣∣∣∂xuf(xu; 1)
∣∣∣p dxu

)p′/p)1/p′

·
( ∑

u⊆{1,...,s}

(∫
[0,1]|u|

∣∣∣∆P (xu; 1)
∣∣∣q dxu

)q′/q)1/q′

,

where 1 < p, p′, q, q′ < ∞ and 1/p + 1/q = 1 = 1/p′ + 1/q′. The estimate also holds for
one or more of p, p′, q, q′ equal to infinity with the obvious modifications to the norms.

Proof. We already derived an estimate of the form

|Is(f)−Qn(f)| ≤
∑

u⊆{1,...,s}

⟨au , bu⟩L2([0,1]s)

for particular functions au and bu. Two applications of Hölder’s inequalities show

|Is(f)−Qn(f)| ≤
∑

u⊆{1,...,s}

∥au∥Lp∥bu∥Lq ≤
( ∑

u⊆{1,...,s}

∥au∥p
′

Lp

)1/p′( ∑
u⊆{1,...,s}

∥bu∥q
′

Lq

)1/q′

.

This concludes the proof. □

The previous theorem shows that the integration error is controlled by a factor which
depends only on the set P . This discrepancy term has a geometric interpretation in the
sense that ∑

z∈P

s∏
j=1

1{≥zj}(xj)

7



0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. On the left hand side we see a sample of uniformly distributed
points P with n = 100. There are 44 points (red) in the box [0, 0.6]×[0, 0.7]
(a share of 0.44) and the actual volume of the box is 0.42. Hence, we obtain
∆P (0.6, 0.7) = 0.44− 0.42 = 0.02. On the right-hand side, we see a tensor
point-set P with n = 100. There are 56 points in the box, which results in
a discrepancy of ∆P (0.6, 0.7) = 0.14.

gives the number of points in P which are in the axis parallel box [0,x] and
∏s

j=1 xj is

just the volume of that box. Hence, ∆P (x) compares the actual volume of the box [0,x]
with the share of points that are located in this box (see Figure 1 for an example). It is
rather obvious, that tensor points are not well-suited to minimize the discrepancy.

1.6. Stratification. Obviously, random points will not always be well distributed in the
unit cube and thus fail to minimize the discrepancy. One way to improve this situation is
to divide the unit cube into smaller disjoint parts [0, 1]s =

⋃L
ℓ=1Dℓ (so called strata) and

run a MC quadrature in each of those parts. The stratified MC quadrature rule reads

Qstrat(f) :=
L∑

ℓ=1

|Dℓ|
nℓ

nℓ∑
i=0

f(xi,ℓ),

where the xi,ℓ are chosen independently and uniformly in Dℓ. Given a budget of function
evaluations N ∈ N, it makes sense to choose nℓ := ⌈N |Dℓ|⌉ proportionally to the size
of Dℓ. However, other choices (e.g., proportionally to the variance of f within Dℓ) are
usefull as well.

We immediately see that Qstrat is unbiased, i.e.,

E(Qstrat(f)) =
L∑

ℓ=1

|Dℓ|
nℓ

nℓ∑
i=0

E(f(xi,ℓ)) =
L∑

ℓ=1

|Dℓ|
1

|Dℓ|

∫
Dℓ

f dx = Is(f).

To compute the quadrature error, we proceed as in the standard MC case, i.e.,

E|Qstrat(f)− Is(f)|2 =
L∑

ℓ,ℓ′=1

E
( |Dℓ|
nℓ

nℓ∑
i=0

f(xi,ℓ)−
∫
Dℓ

f dx
)( |Dℓ′ |

nℓ′

nℓ′∑
i=0

f(xi,ℓ′)−
∫
Dℓ′

f dx
)
.
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Independence of the sample points shows

E|Qstrat(f)− Is(f)|2

=
L∑

ℓ̸=ℓ′=1

E
( |Dℓ|
nℓ

nℓ∑
i=0

f(xi,ℓ)−
∫
Dℓ

f dx
)
E
( |Dℓ′ |
nℓ′

nℓ′∑
i=0

f(xi,ℓ′)−
∫
Dℓ′

f dx
)
.

+
L∑

ℓ=1

E
( |Dℓ|
nℓ

nℓ∑
i=0

f(xi,ℓ)−
∫
Dℓ

f dx
)2

.

The terms in the second sum correspond to the standard MC error which we already
computed in Theorem 1. The terms in the first double sum disappear because of the
unbiasedness of the MC quadrature in each strata Dℓ. Thus, we end up with

E|Qstrat(f)− Is(f)|2 =
L∑

ℓ=1

|Dℓ|2
σ2
ℓ

nℓ

≤ 1

N

L∑
ℓ=1

|Dℓ|σ2
ℓ ,

where σ2
ℓ := |Dℓ|−1

∫
Dℓ
f 2 dx−

(
|Dℓ|−1

∫
Dℓ
f dx

)2
. Obviously, this can be an improvement

over plain MC as σℓ = 0 for functions f which are constant in each of the Dℓ.
With µℓ := |Dℓ|−1

∫
Dℓ
f dx, we also see that the error estimate is never worse than for

plain MC. To that end, compute

Var(f)2 =

∫
[0,1]s

f 2 dx−
(∫

[0,1]s
f dx

)2

=
L∑

ℓ=1

|Dℓ|
1

|Dℓ|

∫
Dℓ

f 2 dx−
L∑

ℓ,ℓ′=1

|Dℓ||Dℓ′|µℓµℓ′

=
L∑

ℓ=1

|Dℓ|σ2
ℓ +

L∑
ℓ=1

|Dℓ|µ2
ℓ −

L∑
ℓ,ℓ′=1

|Dℓ||Dℓ′|µℓµℓ′ .

There holds with Hölder
L∑

ℓ,ℓ′=1

|Dℓ||Dℓ′ |µℓµℓ′ ≤
( L∑

ℓ,ℓ′=1

|Dℓ||Dℓ′|µ2
ℓ

)1/2( L∑
ℓ,ℓ′=1

|Dℓ||Dℓ′ |µ2
ℓ′

)1/2

=
L∑

ℓ=1

|Dℓ|µ2
ℓ .

This, together with the above shows Var(f)2 ≥
∑L

ℓ=1 |Dℓ|σ2
ℓ . Hence, the stratified MC

error estimate is never worse than the plain MC error estimate from Theorem 1. However,
the rate of N−1/2 is still the best we can hope for.

1.7. Digital nets. In the following, we will discuss an important class of QMC point-sets
Pm, which perform better than the MC methods.

Definition 7 (Digital (t,m, s)-net). A dyadic interval Im,a ⊆ [0, 1]s in s-dimensions is
defined by multi-indices a,m ∈ Ns

0 with 0 ≤ aj ≤ 2mj−1 for all j = 1, . . . , s and

Im,a :=
s∏

j=1

[aj2
−mj , (aj + 1)2−mj).

Note that |Im,a| = 2−|m| and for fixed m,
⋃

0≤a≤2m−1 Im,a = [0, 1)s form a partition of
the unit cube. For t,m ∈ N0 with t ≤ m, a point set P ⊆ [0, 1)s with #P = 2m is called
a digital (t,m, s)-net if

#(P ∩ Im,a) = 2t

9
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Figure 2. The geometric properties of a digital (0, 3, 2)-net. The dyadic
intervals are indicated with dashed lines. Each of them contains exactly
one point of the digital net.

for all m ∈ Ns
0 with |m| = m − t. This condition suggests that a (t,m, s)-net is well

distributed in the unit cube and the distribution properties are better if t is small since the
dyadic intervals can be chosen finer (see Figure 2 for an illustration). Note that digital
nets can be defined in other bases than the binary base 2.

One way to generate a digital (t,m, s)-net is to define matrices C1, . . . ,Cs ∈ {0, 1}m×m

such that (C1)1:m1,:
...

(Cs)1:ms,:


has full rank for all m = (m1, . . . ,ms) ∈ Ns

0 with |m| = m1 + . . . + ms = m − t and
some 0 ≤ t ≤ m. This is also sometimes called the (t,m, s)-net property for matrices.
An example for s = 2 and t = 0 is given by:

C1 :=


1 0 . . . 0
0 1 . . . 0
...

...
0 . . . 0 1

 and C2 :=


0 0 . . . 1
0 . . . 1 0
...

...
1 0 . . . 0

 .

We generate a point-set P = {z0, . . . ,z2m−1} as follows:
For ℓ = 0, . . . , 2m − 1 do:

(1) Write ℓ in its base-2 representation, i.e.,

ℓ = ℓ0 + 2ℓ1 + 22ℓ2 + . . .+ 2m−1ℓm−1 (4)

10



for coefficients ℓi ∈ {0, 1}.
(2) Compute for j = 1, 2, . . . , s modulo 2

yj := Cjℓ,

where ℓ = (ℓ0, ℓ1, . . . , ℓm−1) and yj ∈ {0, 1}m.
(3) Set

zℓ := (zℓ,1, . . . , zℓ,s) with zℓ,j := yj,02
−1 + yj,12

−2 + . . . yj,m−12
−m.

The resulting point-set Pm is called a digital (t,m, s)-net. It has some rather nice geo-
metric properties.

Lemma 8. Given m ∈ Ns
0 with |m| = m− t ∈ N and a with 0 ≤ aj ≤ 2mj −1, define the

interval Im,a :=
∏s

j=1[aj2
−mj , (aj + 1)2−mj) ⊆ [0, 1)s. Then, there holds |Pm ∩ Im,a| = 2t

for all choices of m and a. Thus, Pm is a digital (t,m, s)-net according to Definition 7.

Proof. We recall that every point z ∈ Pm is of the form

zℓ := (zℓ,1, . . . , zℓ,s) with zℓ,j := yj,02
−1 + yj,12

−2 + . . . yj,m−12
−m.

We write aj = aj,mj
+aj,mj−12+. . .+aj,12

mj−1 and observe that zℓ,j ∈ [aj2
−mj , (aj+1)2−mj)

implies that

aj,mj
2−mj + aj,mj−22

−mj+1 + . . .+ aj,12
−1 ≤ yj,12

−1 + yj,22
−2 + . . . yj,m−12

−m+1

< (aj,mj
+ 1)2−mj + aj,mj−12

−mj+1 + . . .+ aj,12
−1.

By comparing the digits, it is obvious that aj,i = yj,i for all i = 1, . . . ,mj in order to
satisfy the above estimate. Since |m| = m− t, the restriction zℓ ∈ Im,a determines m− t
digits in total. In other words, the number of points in Im,a is equivalent to the number
of solutions ℓ ∈ {0, 1}m of

a1,1
...

a1,m1

a2,1
...

a2,m2

...
as,1
...

as,m2


=


(C1)1:m1,:

(C2)1:m2,:
...

(C2)1:ms,:

 ℓ mod 2.

Since, by definition of the Cj, the combined matrix above in R(m−t)×m has full rank,
the solution space is a t-dimensional subspace of {0, 1}m (note that we carried out all
calculations in the field Z2). Such a subspace has precisely 2t elements. This can be
seen by noticing that a t-dimensional subspace is spanned by t different basis functions
b1, . . . , bt. Each element of the subspace writes as

∑t
j=1 γjbj with γj ∈ Z2. This leaves 2

t

possible choices of coefficients γ1, . . . , γt. Hence, we conclude the proof. □

Lemma 9. For a digital net as constructed above, there holds ∥∆P∥L∞([0,1]2) ≲ ms−12−m+t

for all m ∈ N.
11



Proof. We give the proof for s = 2, but the idea carries over to the general case. Let
x ∈ [0, 1)2 define the box Bx := [0, x1) × [0, x2) and, without loss of generality, assume
that x1 ≥ x2. We approximate Bx with a union of the intervals Im,a which we denote
by I. Let m1 ≤ m − t be minimal such that 2−m1 < x1. If no such m1 exists, we define
I = ∅ and note |Bx \ I| ≤ 2−m+t. Otherwise, define m2 := m− t−m1 > 0. If 2−m2 ≥ x2,
we again set I = ∅ and note |Bx \ I| ≤ 2 · 2−m+t.

We see that we can fit the intervals I(m1,m2),a in Bx for all a = (0, j) with 2j−m2 < x2.
Lets call the union of these intervals I1. By construction there holds

|[0, 2−m1)× [0, x2) \ I1| ≤ 2−m1−m2 = 2−m+t.

For the remaining box [2−m1 , x1)×[0, x2) we may repeat the argument until the remainder
has a volume less than 2−m. This is reached after at most m iterations. Thus, we can
constructed a disjoint union I ⊆ Bx of intervals Im,a such that

|Bx \ I| ≤ m2−m+t.

By Lemma 8, this implies that ∆P (x) ≥ |I| − |Bx| ≥ −m2−m+t. Analogously, we can
construct a disjoint union I with I ⊇ Bx such that |I \ Bx| ≤ m2−m+t and hence show
that |∆P (x)| ≤ m2−m+t. This concludes the proof. □

The combination of Lemma 9 and the Koksma-Hlawka inequality (Theorem 6 with
q = q = ∞ and p = p′ = 1) shows that the quadrature error of a digital net is bounded
by

|Is(f)−Qn(f)| ≲ log(n)s−1n−1
∑

u⊆{1,...,s}

∫
[0,1]|u|

∣∣∂xuf(xu; 1)
∣∣ dxu.

On the first glance, this is a big improvement over the MC method (double the conver-
gence rate) with the drawback of a much higher regularity requirement on f . The added
regularity is not really a restriction but almost necessary (if high-dimensional functions
are not regular in some sense, there is no chance in doing any computations at all. The
unit cube [0, 1]s is just way to big for large s). However, the factor log(n)s−1 is still bad in
high dimensions. The quantity log(n)s−1n−1 decreases only for n ≥ es−1. Hence, we need
some additional regularity which tells us the importance of different dimensions. This is
achieved by introducing weighted Hilbert spaces. While this theory also exists for digital
nets, we will consider a simpler approach.

1.8. Lattice rules and weighted spaces. It turns out that the Hilbert space Xs does
not contain enough regularity information to obtain dimension independent quadrature
rules. To that end, we introduce unanchored Sobolev spaces. In one dimension, it is clear
that

⟨f , g⟩γ :=

∫ 1

0

f(x) dx

∫ 1

0

g(x) dx+
1

γ

∫ 1

0

f ′(x)g′(x) dx,

is a scalar product of a RKHS. The corresponding kernel is given by

K1,γ(x, y) := 1 + γη(x, y),

where η(x, y) = B2(|x−y|)/2+(x−1/2)(y−1/2) and B2(x) := x2−x+1/6 is the Bernoulli

polynomial of degree 2, which has the useful property
∫ 1

0
B2(|x−y|) dy =

∫ 1

0
B2(y) dy = 0.

Similar to before, we introduce the s-dimensional kernel via

Ks,γ(x,y) =
∑

fu⊆{1,...,s}

γu
∏
j∈u

η(x,y)

12
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Figure 3. Lattice rule with n = 100 and z = (1, 9). The shifted version is
generated by applying a random shift (here S = (0.2, 0.3)) and then taking
the fractional part of the points.

(Note that in case γu =
∏

j∈u γj for some γj > 0, there holdsKs,γ(x,y) =
∏s

j=1K1,γj(x,y).)
The coefficients γu > 0 are called weights. Heuristically speaking, the weights denote the
importance of a dimension (or combination of dimensions). Again, we can check that
Ks,γ(·, ·) induces the RKHS Xs,γ with the inner product

⟨f , g⟩s,γ =
∑

fu⊆{1,...,s}

γ−1
u

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂xuf(x) dxuc

)(∫
[0,1]s−|u|

∂xug(x) dxuc

)
dxu,

where uc := {1, . . . , s} \ u. The worst-case error for integration in Xs,γ is again given by
Theorem 5. Now, the quantities in the formula are given by∫

[0,1]s
Ks,γ(x,y) dy = 1,∫

[0,1]s

∫
[0,1]s

Ks,γ(x,y) dx dy = 1,∫
[0,1]s

Ks,γ(x,x) dx =
∑

u⊆{1,...,s}

γu6
−|u|.

These formulae already hint at the possibility of bounding the worst-case error indepen-
dently of the dimension, if only that weights converge to zero sufficiently fast. To prove
this, we introduce Lattice rules.

An n-point rank-one lattice rule in s-dimensions is a QMC method with points P
generated by

zi :=
iz

n
mod 1 :=

iz

n
−
⌊iz
n

⌋
, for all i = 0, 1, . . . , n− 1,

where z ∈ Zs is an s-dimensional integer vector having no factor in common with n
(the generating vector). To obtain a statistical error estimate and to avoid pathological
cases, it is often useful to apply a random shift to a lattice rule. This means that a shift
S ∈ [0, 1]s is picked uniformly and randomly and we consider the shifted lattice

P + S :=
{
z + Smod 1 : z ∈ P

}
.

The corresponding quadrature rule is denoted by Qn(S, f). This procedure is illustrated
in Figure 3.

From the theory of worst-case errors, we obtain immediately

|Is(f)−Qn(S, f)| ≤ en(P + S,X )∥f∥X .
13



This means that the expected worst-case error (expectation is taken over all possible
random shifts S ∈ [0, 1]s) is given by√

E|Is(f)−Qn(S, f)|2 ≤ eshn (P,X )∥f∥X ,
where

eshn (P,X )2 :=

∫
[0,1]s

en(P + S,X )2 dS.

Remark 10. The shift-averaged error estimate might seem useless for practical appli-
cations as one still has to choose a concrete shift S. However, the Chebyshev inequality
shows for the random variable X(S) := |Is(f)−Qn(S, f)| that

P(|X − E(X)| ≥ k) ≤ Var(X)

k2
≤ E(X2)

k2
≤ eshn (P,X )2∥f∥2X

k2
.

With k := Ceshn (P,X )∥f∥X for some C > 0 and E(X) ≤
√

E(X2) ≤ eshn (P,X )∥f∥X , the
triangle inequality and the above estimate show

P(X ≥ (C + 1)eshn (P,X )∥f∥X ) ≤ P(|X − E(X)| ≥ k) ≤ 1/C2.

Hence, for a random shift S, we have a probability of at least 1− C−2 that

|Is(f)−Qn(S, f)| ≤ (C + 1)eshn (P,X )∥f∥X .

Lemma 11. The shift-averaged worst-case error eshn is given by

eshn (P,X )2 = −
∫
[0,1]s

∫
[0,1]s

K(x,y) dx dy +
1

n2

∑
z∈P

∑
z′∈P

Ksh(z, z′),

where

Ksh(x,y) :=

∫
[0,1]s

K(x+ Smod 1,y + Smod 1) dS.

Proof. With the formula for en from Theorem 5, we obtain∫
[0,1]s

en(P + S,X )2 dS =

∫
[0,1]s

∫
[0,1]s

K(x,y) dx dy − 2

n

∑
z∈P

∫
[0,1]s

∫
[0,1]s

K(z + Smod 1,y) dy dS

+
1

n2

∑
z∈P

∑
z′∈P

∫
[0,1]s

K(z + Smod 1, z′ + Smod 1) dS.

A change of variables in the second term shows that it equals the integral of the first
term. This concludes the proof. □

The function Ksh is actually a kernel of a RKHS with the additional shift-invariance
property

Ksh(x+ Smod 1,y + Smod 1) = K(x,y).

Lemma 12. The shift-invariant kernel Ksh
s,γ satisfies

Ksh
s,γ(x,y) :=

∑
u⊆{1,...,s}

γu
∏
j∈u

B2(|xj − yj|).

Proof. The statement can be proved by straightforward calculation of the integrals. □

Since the lattice-rule pointset P = P (z) depends only on the generating vector z, we
also use the notation

eshn (z)2 := eshn (P (z),Xs,γ)
14



Lemma 13. The shift-averaged worst-case error for lattice rules in the unachored space
Xs,γ satisfies

eshn (z)2 =
∑

∅≠u⊆{1,...,s}

γu

( 1
n

n−1∑
k=0

∏
j∈u

(
B2

(kzj
n

mod 1
))

Proof. Again, the statement can be proved by straightforward calculations. □

It is obviously clear that not every generating vector z ∈ Zs will lead to a good lattice
rule. For example the vector z := (1, 1) just results in points which lie on the diagonal
of the unit square. A general method for constructing good generating vectors would be
to optimize eshn (z) over all z ∈ Zs. This, however, is prohibitively expensive. A feasible
method to achieve similar performance is the component-by-component algorithm:

Algorithm 1. Input: number of points n ∈ N, dimension s ∈ N, and weights γ.

(1) Set z1 = 1.
(2) For j = 2, 3, . . . , s, choose zj ∈ {1, . . . , n− 1} with gcd(zj, n) = 1 such that

eshn (z1, . . . , zj) is minimal.

Output: generating vector z.

While for general weights γ, even the component-by-component (CBC) algorithm is to
expensive to compute, for special weights, there are very efficient implementations, which
we will discuss later.

First, we want to prove that Algorithm 1 actually produces a good generating vector
z. To that end, we require a well-known fact about Fourier series.

Lemma 14. There holds for all m ∈ N

1

n

n−1∑
k=0

e2πikm/n =

{
1 mmodn = 0,

0 else.

Proof. If mmodn = 0, we have e2πikm/n = 1 and hence the statement follows. Otherwise,
we have ( n−1∑

k=0

e2πikm/n
)
e2πim/n =

n−1∑
k=0

e2πi(k+1)m/n =
n−1∑
k=0

e2πikm/n,

since e2πinm/n = 1 = e2πi0m/n. Since e2πim/n ̸= 1, it follows
∑n−1

k=0 e
2πikm/n = 0. This

concludes the proof. □

Before we prove Theorem 16, we require a reverse Jensen-type inequality.

Lemma 15. For λ ≤ 1 and αk ≥ 0, there holds( ∞∑
k=0

αk

)λ

≤
∞∑
k=0

αλ
k .

Proof. We note that it suffices to show (a+ b)λ ≤ aλ + bλ for a, b ≥ 0 and λ ≤ 1, the rest
follows by induction on the number of summands. Consider the functions f(a) := (a+b)λ

and g(a) := aλ + bλ for a, b ≥ 0. We note that f ′(a) = λ(a+ b)λ−1 ≤ g′(a) = λaλ−1 (note
that λ−1 ≤ 0). Since f(0) = g(0) and f ′(a) ≤ g′(a) for all a ≥ 0, we conclude f(a) ≤ g(a)
for all a ≥ 0. This concludes the proof. □
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We first prove a rather abstract convergence result, which give us a hint on how to
choose the weights γ.

Theorem 16. The component-by-component algorithm (Algorithm 1) constructs a gen-
erating vector z which satisfies

eshn (z)2 ≤
( 1

ϕ(n)

∑
∅≠u⊆{1,...,s}

γλu

(2ζ(2λ)
(2π2)λ

)|u|)1/λ

for all λ ∈ (1/2, 1], where ζ(·) is the Riemann zeta function and ϕ(n) := #
{
1 ≤ k ≤ n :

gcd(k, n) = 1
}
is the Euler totient function.

Remark 17. Theorem 16 shows that, if the weights γu converge to zero sufficiently fast,
we achieve a convergence rate of ϕ(n)−1+δ for all δ > 0 for the shift-averaged worst-case
error eshn (z) if we construct z with the CBC Algorithm (Algorithm 1). This means that√

E|Is(f)−Qn(S, f)|2 ≲ ϕ(n)−1+δ∥f∥Xγ,s ,

where the expectation is taken over the shifts S ∈ [0, 1]s. This error estimate is indepen-
dent of the dimension s ∈ N.

The Euler totient function ϕ(n) satisfies

ϕ(n) >
n

eµ log(log(n)) + 3
log(log(n))

for all n > 2 and with Euler’s constant µ ≈ 0.577215665 . . .. Thus, we obtain for the
error estimate above √

E|Is(f)−Qn(S, f)|2 ≲ n−1+δ∥f∥Xγ,s ,

for all δ > 0 with the hidden constant depending on δ. In terms of convergence rate, this
is almost as good as digital nets which achieve n−1 up to logarithmic terms. However,
the present convergence estimate is completely independent of the number of dimensions
s ∈ N.

Proof of Theorem 16. We prove this by induction on s. The first step s = 1 is straight-
forward to verify for all λ ∈ (1/2, 1] since

∑n−1
k=0 B2(k/n) = 1/(6n) and hence

eshn (1)2 ≤ γ1
6n2

.

With ϕ(n) ≤ n and ζ(2λ) ≥ ζ(2) = π2/6, we conclude the step s = 1.
We assume that we have chosen the first s − 1 components z1, . . . , zs−1 such that the

statement of the theorem holds with s replaced by s− 1. Next, we derive the identity

eshn (z)2 = eshn (z1, . . . , zs−1)
2 + θ(z)

with

θ(z) :=
∑

s∈u⊆{1,...,s}

γu

( 1
n

n−1∑
k=0

∏
j∈u

(
B2

(kzj
n

mod 1
))
.

Note that the worst-case error in s − 1 dimensions is always smaller or equal to the
worst-case error in s dimensions (one can extend the worst possible integrand in s − 1
dimensions to be constant in dimension s). Hence θ(z) ≥ 0 for any choice of z.
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The term kzj/nmod 1 is quite cumbersume to tackle directly, however, we notice that
it is periodic in zj. Hence, a Fourier expansion of B2(kzj/nmod 1) might be helpful. The
Fourier series reads B2(x) = 1/(2π2)

∑
h∈Z\{0} e

2πihx/h2 for all x ∈ R and we can write

∏
j∈u

(
B2

(kzj
n

mod 1
))

=
1

(2π2)|u|

∑
hu∈(Z\{0})|u|

e2πikhu·zu/n∏
j∈u h

2
j

,

where hu · zu =
∑

j∈u hjzj. With Lemma 14, this simplifies to

1

n

n−1∑
k=0

∏
j∈u

(
B2

(kzj
n

mod 1
))

=
1

(2π2)|u|

∑
hu∈(Z\{0})|u|
hu·zu modn=0

1∏
j∈u h

2
j

=
1

(2π2)|u|

∑
hs∈Z\{0}

h−2
s

∑
hu\{s}∈(Z\{0})|u|−1

hu·zu modn=0

1∏
j∈u\{s} h

2
j

.

Let z⋆s denote the minimum chosen by Algorithm 1 in step s. Since the minimum is
always smaller than the average, we have for all λ ∈ (0, 1] that

θ(z1, . . . , zs−1, z
⋆
s)

λ ≤ 1

ϕ(n)

∑
1≤zs≤n−1
gcd(zs,n)=1

θ(z1, . . . , zs−1, zs)
λ.

Altogether, and by use of Lemma 15, we obtain

θ(z1, . . . , zs−1, z
⋆
s)

λ

≤ 1

ϕ(n)

∑
1≤zs≤n−1
gcd(zs,n)=1

∑
s∈u⊆{1,...,s}

γλu
(2π2)|u|λ

∑
hs∈Z\{0}

|hs|−2λ
∑

hu\{s}∈(Z\{0})|u|−1

hu·zu modn=0

1∏
j∈u\{s} |hj|2λ

≤ 1

ϕ(n)

∑
s∈u⊆{1,...,s}

γλu
(2π2)|u|λ

∑
hs∈Z\{0}

|h̃s|−2λ
∑

1≤zs≤n−1
gcd(zs,n)=1

∑
hu\{s}∈(Z\{0})|u|−1

hu·zu modn=0

1∏
j∈u\{s} |hj|2λ︸ ︷︷ ︸

:=SUM

,

where h̃s := n⌊hs/n⌋.

SUM =
n−1∑
c=0

∑
1≤zs≤n−1
gcd(zs,n)=1

∑
hs∈Z\{0}

hszs modn=c

|h̃s|−2λ
∑

hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}+cmodn=0

1∏
j∈u\{s} |hj|2λ

.
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Since hszs modn = c implies hs = kn+cz−1
s for the muliplicative inverse z−1

s of zs modulo

n, we have h̃s = kn for all c and zs. Hence, the sum above simplifies to

SUM =
∑

k∈Z\{0}

|kn|−2λ

n−1∑
c=0

∑
1≤zs≤n−1
gcd(zs,n)=1

∑
hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}+cmodn=0

1∏
j∈u\{s} |hj|2λ

=
∑

k∈Z\{0}

|kn|−2λϕ(n)
n−1∑
c=0

∑
hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}+cmodn=0

1∏
j∈u\{s} |hj|2λ

=
∑

k∈Z\{0}

|kn|−2λϕ(n)
∑

hu\{s}∈(Z\{0})|u|−1

1∏
j∈u\{s} |hj|2λ

.

Since λ > 1/2, ϕ(n) ≤ n2λ and we have∑
k∈Z\{0}

|kn|−2λϕ(n) ≤ ϕ(n)

n2λ

∑
k∈Z\{0}

|k|−2λ ≤ 2ζ(2λ).

Hence, SUM is bounded by

SUM ≤ 2ζ(2λ)
∑

hu\{s}∈(Z\{0})|u|−1

1∏
j∈u\{s} |hj|2λ

= 2ζ(2λ)
( ∑

h∈Z\{0}

|h|−2λ
)|u|−1

= (2ζ(2λ))|u|.

Altogether, and by use of the induction hypothesis, we prove

eshn (z)2 = eshn (z1, . . . , zs−1)
2 + θ(z)

≤
( 1

ϕ(n)

∑
∅≠u⊆{1,...,s−1}

γλu

(2ζ(2λ)
(2π2)λ

)|u|)1/λ

+
( 1

ϕ(n)

∑
s∈u⊆{1,...,s}

γλu
(2π2)|u|λ

(2ζ(2λ))|u|
)1/λ

.

By use of ax + bx ≤ (a+ b)x for all x ≥ 1 and a, b ≥ 0, we conclude the proof.
□

In the following, we will require a small combinatorial identity.

Lemma 18. For s ∈ N, there holds
∑

u⊆{1,...,s}
∏

j∈u aj =
∏s

j=1(1 + aj) for aj ∈ R.

Proof. We prove the statement by induction. For s = 1, the statement is trivial. Assume
the statement holds for s− 1. Then, we have∑

u⊆{1,...,s}

∏
j∈u

aj =
∑

u⊆{1,...,s−1}

∏
j∈u

aj +
∑

u⊆{1,...,s−1}

∏
j∈u

ajas

=
s−1∏
j=1

(1 + aj) + as

s−1∏
j=1

(1 + aj) =
s∏

j=1

(1 + aj).

This concludes the proof. □

1.9. Fast CBC construction for special weights. As mentioned above, Algorithm 1
is still unreasonably expensive for general weights γ. We first consider the special case
of product weights, i.e.,

γu =
∏
j∈u

γj
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for all u ⊆ {1, . . . , s} and some γj > 0. The naive way of Algorithm 1 works as follows
in the case of product weights: For all j = 2, . . . , s, look for zj ∈ Un :=

{
1 ≤ z ≤ n− 1 :

gcd(z, n) = 1
}
such that

eshn (z1, . . . , zj)
2 =

∑
∅̸=u⊆{1,...,j}

γu

( 1
n

n−1∑
k=0

∏
i∈u

(
B2

(kzi
n

mod 1
))

= −1 +
1

n

n−1∑
k=0

j∏
i=1

(
1 + γi

(
B2

(kzi
n

mod 1
)))

is minimal (we used Lemma 18 in the last equality). The straighforward implementation
of this has a cost of O(s2n2) (for each j, we have to compute n-terms of the sum and a
product of j-terms, moreover we have to search through ϕ(n) values of zs). To simplify
the computation, we may write

eshn (z1, . . . , zj)
2 = eshn (z1, . . . , zj−1)

2 +
γj
n

n−1∑
k=0

B2

(kzj
n

mod 1
)︸ ︷︷ ︸

Ω(zj ,k)

j−1∏
i=1

(
1 + γi

(
B2

(kzi
n

mod 1
))

︸ ︷︷ ︸
pj−1(k)

)
.

The n values of pj−1(k), k = 0, . . . , n − 1 do not depend on zs and can be stored
during the search. This reduces the cost to O(sn2) at the expense of O(n) storage.
Next, we may vectorize the implementation in the following sense: We store the values
(eshn (z1, . . . , zj)

2)zj∈Un in the vector ej ∈ Rϕ(n). Moreover, we store the matrixΩ ∈ Rϕ(n)×n

defined by

Ωz,k := Ω(z, k) = B2

(kz
n

mod 1
)

for z ∈ Un, k = 0, . . . , n− 1.

Finally, we need the vector pj−1 ∈ Rn defined by pj−1,k := pj−1(k). With this, we may
rewrite Algorithm 1 as (in Matlab notation):
For all j = 2, . . . , s:

(1) Compute

ej = eshn (z1, . . . , zj−1)
2 +

γj
n
Ωpj−1.

(2) Select zj ∈ Un such that ej,zs is the minimal entry of ej.
(3) Set eshn (z1, . . . , zj)

2 = ej,zs .
(4) Update pj = (1 + γsΩzs,:). ∗ pj−1.

(Note that according to Matlab notation, Ωzs,: denotes the row with index zs of the matrix
Ω and .∗ is the elementwise multiplication.) This does not improve the cost estimate yet,
however, the trick is to order the indices z ∈ Un and k = 0, . . . , n − 1 such that the
matrix-vector product Ωpj−1 can be computed quickly.

We start with the simpler case of n ∈ N being prime. Then, ϕ(n) = n− 1. Let g ∈ Un

be the generator of the cyclic group Un, i.e., Un =
{
gi modn : i ∈ N0

}
(this can be done

in O(n log(n))). We reorder Ω to Ω̃ by

Ω̃i+1,j+1 :=

{
Ωgi modn,(g−1)j modn if 0 ≤ i, j ≤ n− 2,

0 if j = n− 1.
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Note that Ωi,0 = 0 for all i ∈ Un. Now, there holds

Ω̃i,j+r = Ωgi−1 modn,(g−1)j−1+r modn = B2

((g−1)j−1+rgi−1

n
mod 1

)
= B2

((g−1)j−1+2rgi−1+r

n
mod 1

)
= Ω̃i+rmodn,j+r

for all 0 ≤ r ≤ n− 1− r. Hence, Ω̃ has an (n− 1)× (n− 1)-submatrix which is circulant,
i.e.,

Ω̃ =
(
C B2(0)

)
,

for C ∈ Rn−1×n−1 being a circulant matrix.

Lemma 19. Let C ∈ Rn×n denote a circulant matrix defined by Cij := ci−jmodn for
some c ∈ Rn. Then, the matrix-vector product Cx ∈ Rn can be computed via Cx =
F−1(F(c) ⊙ F(x)), where F : Cn → Cn denotes the discrete Fourier transform defined
by F(x)j :=

∑n−1
k=0 xke

−2πijk/n and F−1(x)j :=
1
n

∑n−1
k=0 xje

2πijk/n and ⊙ : Cn × Cn → Cn

denote the pointwise multiplication of vectors.

Proof. Multiplication with a circulant matrix satisfies

(Cx)i =
n−1∑
j=0

Cijxj =
n−1∑
j=0

ci−jmodnxj

This is a discrete convolution, and we my write Cx = c ⋆ x. The discrete Fourier
transform F : Cn → Cn satisfies

F(Cx) = F(c)⊙F(x).

Since F is isomorphic, this concludes the proof. □

Remark 20. The matrix vector product with circulant matrices can be computed in
O(n log n) using Fast-Fourier-Transform (FFT). This observation reduces the cost of the
CBC algorithm to O(n log(n)s).

Note that the fast implementation of the CBC algorithm depends crucially on the
product structure of the weights. A similar construction is possible for so-called product-
and-order dependent weights (POD weights) of the form

γu = µ|u|
∏
j∈u

γj

for γj > 0 and µr > 0. The fast CBC algorithm for POD-weights costs O(n log(n)s2).

1.10. Higher-order convergence. Given α ∈ N, any digital (t,m, sα)-net P can be
transformed into a higher-order net, a digital (t,m, s, α)-net Pα. To do that, we use the
digit interlacing function Dα : [0, 1)

α → [0, 1)

Dα(x1, . . . , xα) :=
∞∑
i=1

α∑
j=1

xj,i2
−j−(i−1)α,

where xj =
∑∞

i=1 xj,i2
−i for j = 1, . . . , α. We also define Dα : [0, 1)

sα → [0, 1)s by
Dα(x) := (Dα(x1, . . . , xα), Dα(xα+1, . . . , x2α), . . .). The function is called interlacing
function since, in base 2, there holds

Dα(x1, . . . , xα) = 0.x1,1x2,1 . . . xα,1x1,2x2,2 . . . xα,2 . . .
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Figure 4. The geometric properties of higher-order digital nets. We see
a digital (1, 4, 2, 2)-net (interlacing factor α = 2). Each of the shaded in-
tervals contains exactly two points of Pα. The conditions hold additionally
to the classical (t,m, s)-net conditions.

The digitally interlaced net Pα :=
{
Dα(x) : x ∈ P

}
satisfies additional geometric

properties. An in depth look into those properties is beyond the scope of this lecture,
however, Figure 4 illustrates them.
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For sufficiently smooth integrand f with ∂r1x1
. . . ∂rsxs

and 1 ≤ ri ≤ α bounded, higher-
order digital nets can achieve a quadrature error of

|Is(f)−Q(Pα, f)| ≲ msα2−αm ≃ log(N)sα/Nα.

Again, we have the problem that log(N)sα spoils the convergence for small N .

1.11. Polynomial lattice rules. A polynomial lattice rule is the digital net analogue of
a lattice rule. Let p ∈ Z2[x] denote a polynomial of degree m (with coefficients in {0, 1}).
Let q1, . . . , qs ∈ Z2[r] denote polynomials of degree m − 1. Since p/qi is an analytic
function in C apart from the zeros of p, we may consider the Laurent series expansion

qi(x)

p(x)
=

∞∑
j=1

αi,jx
−j

for coefficients αi,j ∈ Z2. We define the generating matrices

Ci :=


αi,1 αi,2 αi,3 . . . αi,m

αi,2 αi,3 αi,4 . . .
αi,3 αi,4 . . .
...

αi,m . . . αi,2m−1

 ∈ Zm×m
2

for i = 1, . . . , s.

Lemma 21. The Ci generate a (t,m, s)-net, if and only if, there holds

s∑
i=1

βi(x)qi(x) ̸= 0 mod p

for all βi ∈ Z2[x] with degree mi − 1 and
∑s

i=1mi ≤ m− t.

Remark 22. The use of the negative part of the Laurent series corresponds to the mod 1
operation in the definition of lattice rules.

Exactly as for lattice rules, we may consider the shifted digital net P ⊕ S for any shift
S ∈ [0, 1]. Now, we consider the digital shift

x⊕ y :=
∞∑
i=1

(xi + yimod 2)2−i

for x =
∑∞

i=1 xi2
−i and y =

∑∞
i=1 yi2

−i, xi, yi ∈ [0, 1]. Again, we consider the digital shift
averaged worst-case error√

E|Is(f)−Q(P ⊕ S, f)|2 ≤ edshn (P,X )∥f∥X .

And, there also exists a CBC-type algorithm for polynomial lattice rules

Algorithm 2. Input: number of points n ∈ N, dimension s ∈ N, and weights γ.

(1) Set q1 = 1.
(2) For j = 2, 3, . . . , s, choose qj ∈

{
q ∈ Z2[x] \ {0} : deg(q) < m

}
eshn (q1, . . . , qj) is minimal.

Output: generating polynomials qj.
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2. Poisson problem with random diffusion coefficient

We consider the Poisson problem

−div(A(x,ω)∇u(x,ω)) = f(x) for all x ∈ D, ω ∈ Ω

u(x,ω) = 0 for all x ∈ ∂D, ω ∈ Ω.

Here, D ⊂ Rd is the physical domain of the equation and Ω is the stochastic domain.
This equation models the (stationary) end result of diffusion of pollutants in uncertain
materials. The right-hand side f determines the amount of pollutant and the coefficient
A(x, ω) the permeability of the material. The unknown material can be, e.g., soil or rock
in a water pollution simulation or living tissue in a drug absorption simulation.

We assume that the random coefficient A(x,ω) is given in form of a Karhunnen-Loeve
expansion, i.e.,

A(x,ω) := ϕ0(x) +
∞∑
i=1

ϕi(x)ωi

for all x ∈ D and all ω = (ω1, ω2, . . .) ∈ Ω := [−1/2, 1/2]N with coefficient functions
ϕi : D → R.

Remark 23. We may introduce randomness by imagining the ωi to be uniform random
variables on [−1/2, 1/2]. Mathematically, one would need to separate the random variable

as a function ωi : Ω̃ → [−1/2, 1/2] on some underlying probability space Ω̃ from the
parameter ωi ∈ [−1/2, 1/2]. However, there is no real gain in doing this here and it just
complicates the notation.

We will see later, why this assumption makes sense, for now we will accept it as a
given. The functions ϕi : D → R are deterministic (do not depend on ω). We consider
the problem in the weak form, i.e., we find u ∈ H1

0 (D) :=
{
v ∈ L2(D) : ∇v ∈ L2(D)

}
such that

aω(u(ω), v) := a(A(ω);u(ω), v) :=

∫
D

A(x,ω)∇u(x,ω) · ∇v(x) dx =

∫
D

f(x)v(x) dx

(5)

for all v ∈ H1
0 (D). To guarantee the existence of a unique solution, we need to assume

0 < Amin ≤ real
(
A(x,ω)

)
≤ Amax <∞

for all x ∈ D and almost all ω ∈ Ω (note that A(x, ω) ∈ R for the moment, but we
will reuse this condition later with complex coefficients). Then, the Lax-Milgram lemma
shows that there exists a unique weak solution u ∈ H1

0 (D) such that

∥∇u∥L2(D) ≤
Amax

Amin

∥f∥H−1(D).

The goal is to compute the expectation of some quantity of interest (QOI) of the exact
solution u. The quantity of interest is in our case a linear functional G ∈ H1

0 (D)⋆ =
H−1(D) and we want to approximate

E(G(u)) =
∫
Ω

G(u(·,ω)) dω ∈ R,

where the expectation is taken with respect to ω ∈ Ω. To do this, we assume the product
measure dω on Ω as a product of uniform measures in each component. Remember that
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the corresponding σ-Algebra is generated by sets of the form{ ∞∏
i=1

Ai : Ai ∈ B([−1/2, 1/2]), Ai = [−1/2, 1/2] for all but finitely many i ∈ N
}

and B([−1/2, 1/2]) denotes the Borel σ-algebra generated by the Euclidean topology on
[−1/2, 1/2].
We need to check that the map ω → G(u(ω)) is measurable.

Lemma 24. Given A,B : Ω → L∞(D), there holds the estimate

∥a(A(ω), ·, ·)− a(B(ω), ·, ·)∥ ≤ ∥A(ω)−B(ω)∥L∞(D) for all ω ∈ Ω.

as well as for ũ ∈ H1
0 (D) denoting the solution of (5) with B instead of A

∥∇(u− ũ)∥L2(D) ≤ Amin
−1∥A(ω)−B(ω)∥L∞(D)∥u∥H1(D).

Proof. The first estimate follows since we have for almost all ω ∈ Ω that

|a(A(ω), u, v)− a(B(ω), u, v)| ≤
∫
D

|A(x,ω)−B(x,ω)||∇u||∇v| dx

≤ ∥A(ω)−B(ω)∥L∞(D)∥u∥H1(D)∥v∥H1(D).

For the second statement, we use ellipticity

Amin∥∇(u− ũ)∥2H1(D) ≤ a(A(ω);u− ũ, u− ũ)

= ⟨f , u− ũ⟩D − a(A(ω); ũ, u− ũ)

= a(B(ω); ũ, u− ũ)− a(A(ω); ũ, u− ũ)

= a(A(ω)−B(ω); ũ, u− ũ)

≤ ∥A(ω)−B(ω)∥L∞(D)∥ũ∥H1(D)∥u− ũ)∥H1(D)

for all ω ∈ Ω. This concludes the proof. □

Lemma 25. Let Si, i ∈ N denote separable metric spaces and let S :=
∏∞

i=1 Si be endowed

with the product topology. Then, there holds B(S) =
∏N

i=1 B(Si), where the latter denotes
the product σ-algebra.

Proof. First,
∏N

i=1 B(Si) is generated by sets of the form
∏

i ̸=k Si × Uk for some open

Uk ⊆ Si. Those sets are part of the topology on S and hence B(S) ⊇
∏N

i=1 B(Si). On the
other hand, since all Si are separable metric spaces, also S is a separable metric space and
for any topological base, the open sets in S are countable unions of that base. Again, we
may choose as a base the sets of the form

∏∞
i=1 Ui with Ui = Si for all but finitely many

i ∈ N. Those sets contained in
∏N

i=1 B(Si) and hence we prove B(S) =
∏N

i=1 B(Si). □

Lemma 26. Assume that
∑∞

i=1 ∥ϕi∥L∞(D) <∞. Then, ω 7→ G(u(ω)) is measurable with
respect to the product measure dω on [−1/2, 1/2]N. Particularly, EG(u) is well-defined.
Proof. Given ε > 0, Lemma 24 implies

|G(u(ω))−G(u(ω′))| ≲
∞∑
i=1

∥ϕi∥L∞(D)|ωi − ω′
i| ≤

n∑
i=1

∥ϕi∥L∞(D)|ωi − ω′
i|+

∞∑
i=n+1

∥ϕi∥L∞(D).

Wemay choose n ∈ N sufficiently large, such that the second sum satisfies
∑∞

i=n+1 ∥ϕi∥L∞(D) <

ε/2. Hence, we find a neighborhood U =
∏n

i=1 Ui ×
∏∞

i=n+1[−1/2, 1/2] ⊆ [−1/2, 1/2]N

in the product topology with ω,ω′ ∈ U implies |G(u(ω)) − G(u(ω′))| < ε. Hence
ω 7→ G(u(ω)) is continuous in product topology and therefore measurable with respect
to the product measure. □
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Lemma 27. If
∑∞

j=0 ∥ϕj∥L∞(D) < ∞, the map ω 7→ G(u(A(ω))) can be extended to a

function which is holomorphic in each argument in the domain Ω′ :=
{
ω ∈ CN : Amin <

realA(x,ω) < Amax for all x ∈ D
}
⊆ CN.

Proof. We verify complex differentiability of the parametric solutions. Fix j ∈ N. Given
z ∈ C, define ω + z ∈ CN by (ω + z)i = ωi for all i ̸= j and (ω + z)j = ωj + z. Let z
be sufficiently small such that there exists ε ≥ |z| with Bε(ω) ⊆ Ω′. Let g(ω) ∈ H1

0 (D)
denote the representer of G(·) with respect to aω, i.e., G(·) = aω(g(ω), ·). This and the
above allows us to compute

G(u(ω + z))−G(u(ω))

z
=
aω(u(ω + z)− u(ω), g(ω))

z

=
aω(u(ω + z), g(ω))−

∫
D
fg(ω) dx

z

=
aω(u(ω + z), g(ω))− aω+z(u(ω + z), g(ω))

z

= −
∫
D

A(x,ω + z)− A(x,ω)

z
∇u(ω + z) · ∇g(ω) dx.

(6)

Since A is affine in each component of ω, we obtain

A(x,ω + z)− A(x,ω)

z
= ϕj(x).

Lemma 24 and ∥A(ω + z) − A(ω)∥L∞(D) ≤ ∥ϕj∥L∞(D)|z| shows limz→0 u(ω + z) = u(ω)
in H1(D) and hence

lim
z→0

G(u(ω + z))−G(u(ω))

z
= −

∫
D

ϕj(x)∇u(ω) · ∇g(ω) dx.

This shows the existence of the complex derivative and hence concludes the proof. □

2.1. FEM approximation. To approximate the solution u(ω) of the deterministic prob-
lem, we use a standard finite element method. For a given triangulation Th of D, we
construct that space Vh ⊂ H1

0 (D) of elementwise affine functions, i.e.,

Vh :=
{
v ∈ H1

0 (D) : v|T (x) = aT · x+ bT for some aT ∈ Rd, bT ∈ R, T ∈ Th

}
.

The index h > 0 denotes the maximal mesh-size, i.e. diam(T ) ≤ h for all T ∈ Th. The
FEM approximation ush(ω) ∈ X is defined by:

asω(u
s
h(ω), v) =

∫
D

fv dx for all v ∈ Vh,

where

asω(u, v) :=

∫
D

(
ϕ0(x) +

s∑
j=1

ϕj(x)ωj

)
∇u(x) · ∇v(x) dx

is the truncated version of aω(·, ·). This allows us to approximate

E(G(u)) ≈ Qn(G(u
s
h)),

where Qn(·) is a quadrature formula on [−1/2, 1/2]s.
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Lemma 28. Assume that
∑∞

j=1 ∥ϕj∥L∞(D) < 2 infx∈D ϕ0(x) and define us ∈ H1
0 (D) as

the unique solution of

asω(u
s, v) =

∫
D

fv dx for all v ∈ H1
0 (D).

Then, also ush(ω) is well-defined for all ω ∈ Ω and satisfies

∥u(ω)− us(ω)∥H1(D) ≤ C∥u(ω)∥H1(D)

∞∑
j=s+1

∥ϕj∥L∞(D),

∥us(ω)− ush(ω)∥H1(D) ≤ C inf
v∈Vh

∥u(ω)− v∥H1(D),

for all C > 0 with
∑∞

j=1 ∥ϕj∥L∞(D) + C−1/2 < 2 infx∈D ϕ0(x).

Proof. The assumption on the ϕj implies that there exists δ > 0 such that

0 < δ ≤ ϕ0(x) +
∞∑
j=1

ϕj(x)ωj ≤ δ−1

for all x ∈ D and all ω ∈ [−1/2, 1/2]N. Hence, the Lax-Milgram lemma guarantees the
existence of the unique solutions us ∈ H1

0 (D) and ush ∈ Vh. We obtain (Céa lemma) that

∥∇(us − ush)∥2L2(D) ≤ δ−1asω(u
s − ush, u

s − ush)

≤ δ−1asω(u
s − ush, u

s − vh) ≤ δ−2∥∇(us − ush)∥L2(D)∥∇(us − vh)∥L2(D)

for all vh ∈ Vh (since asω(u
s − ush, u

s
h) = 0 = asω(u

s − ush, u
s − vh) by definition). This

implies

∥∇(us − ush)∥L2(D) ≤ δ−2∥∇(us − vh)∥L2(D).

Lemma 24 shows

∥∇(u− us)∥L2(D) ≲ δ−1∥
∞∑

j=s+1

ϕj∥L∞(D)∥u∥H1(D).

Altogether, we conclude the proof with the Friedrich’s inequality

∥v∥H1(D) ≲ ∥∇(v)∥L2(D) for all v ∈ H1
0 (D).

□

The last result shows that in order to estimate the approximation error, it suffices to
estimate √

ES|E(G(u))−Qn(S,G(ush))|2

≤ |E(G(u− us))|+
√

ES|E(G(us))−Qn(S,G(us))|2

+ |Qn(G(u
s − ush))|

≤
√

ES|Is(G(us))−Qn(S,G(us))|2 + |EG(us − ush)|

+ C∥G∥
∞∑

j=s+1

∥ϕj∥L∞(D).

(7)

Here, ES denotes the expectation over the random shifts S of the lattice rule from the
previous section and E is the expectation over the random parameter space Ω. While
|Is(G(us))−Qn(G(u

s))| is a high-dimensional integration error, the remaining error con-
tributions depend only on the triangulation Th and the decay of the coefficients ϕj.
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2.2. The quadrature error. The goal is to control the integration error in (7). To
that end, we employ randomly shifted lattice rules from the previous section. In order
to control the error, we need to ensure that the integrand is in a weighted space Xs,γ . In
the following lemma, we use the notion of open balls Br(x) ⊂ C with radius r > 0 and
center x ∈ C.

Lemma 29. Let (ϱj)j∈N be a positive sequence such that

Ω ⊂ Ω′ :=
∏
j∈N

B1/2+ϱj(0)

and that 0 < Amin ≤ realA(x,ω) ≤ Amax for all x ∈ D and all ω ∈ Ω′. Then, we have

∥∂ωuG(u
s)∥L∞(Ω) ≤ C∥f∥H−1(D)∥G∥

∏
i∈u

ϱ−1
i

for all u ⊆ {1, . . . , s} and some constant C > 0 that does not depend on s.

Proof. We define F (ω) := G(us(ω)). Lemma 27 shows that F can be extended to a
function F : Ω′ → C, which is holomorphic in each coordinate ωj. Moreover, Lemma 24
proves that F is uniformly continuous in Ω. Therefore, we obtain immediately by in-
duction that F satisfies the multidimensional analog of Cauchy’s integral formula for
all ω ∈ Ω′: Choose n-distinct coordinates u := {d1, . . . , dn} ⊆ {1, . . . , s}, and define
(z; u) ∈ Rs via

(z; u)i =

{
ωi i /∈ {d1, . . . , dn}
zi else.

Then, there holds for all ω̃ sufficiently close to ω that

F (ω̃) = (2πi)−1

∫
∂Bε1 (ωd1

)

F (z; {d1})
(z1 − ω̃d1)

dz1

= (2πi)−2

∫
∂Bε1 (ωd1

)

∫
∂Bε2 (ωd2

)

F (z; {d1, d2})
(z1 − ω̃d1(z2 − ω̃d2)

dz1 dz2

= . . .

= (2πi)−n

∫
∂Bε1 (ωd1

)

· · ·
∫
∂Bεn (ωdn )

F (z; u)

(z1 − ω̃d1) . . . (zn − ω̃dn)
dz1 . . . dzn,

(8)

where the parameters εi > 0, i = 1, . . . , n are chosen sufficiently small such that the
integration domains of the contour integrals above are contained in Ω′. Choosing εj = ϱj
and ω ∈ Ω we ensure that the contour integrals are contained in Ω′. Thus, differentiation
with respect to ω̃u shows

∂ω̃uF (ω̃) = (2πi)−|u|
∫

∏
i∈u

∂Bϱi (ωi)

F (z; u)∏
i∈u

(zi − ω̃i)
2
dz .

Evaluation at ω̃ = ω shows immediately

|∂ωuF (ω)| ≤ (2π)−|u|
(∏

i∈u

2πϱi
ϱ2i

)
∥F∥L∞(Ω′) ≤

( ∞∏
i=1

ϱ−1
i

)
∥F∥L∞(Ω′).

The norm of F can be bounded by ∥F∥L∞(Ω′) ≤ ∥G∥ supω∈Ω′ ∥us(ω)∥H1(D). This con-
cludes the proof. □
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Lemma 30. Assume that
∑∞

j=1 ∥ϕj∥L∞(D) + δ ≤ 2 infx∈D ϕ0(x) for some δ > 0 as well

as
∑∞

j=1 ∥ϕj∥1/2L∞(D) <∞. Define for sufficiently small δ > 0

βi := 2/δ∥ϕi∥1/2L∞(D)

∞∑
j=1

∥ϕj∥1/2L∞(D).

Then, all u ⊆ {1, . . . , s} satisfy

∥∂ωuF∥L∞(Ω) ≤ C
(∏

i∈u

βi

)
∥us∥H1(D)∥G∥

The constant C > 0 is independent of s.

Proof. Let r =
∑∞

j=1 ∥ϕj∥1/2L∞(D) < ∞. Given u ⊆ {1, . . . , s} and ε > 0, an admissible

sequence (ϱj)j∈N in Lemma 29 is

ϱj := β−1
j = δ/2r−1∥ϕj∥−1/2

L∞(D).

Since |ωj| ≤ 1/2 + ϱj, this sequence satisfies

inf
ω∈Ω′

real
(
ϕ0 +

ν∑
i=1

ωiϕi

)
≥ ϕ0 − 1/2

∞∑
j=1

∥ϕj∥L∞(D) − δ/2r−1

∞∑
i=1

∥ϕj∥1/2L∞(D) ≥ δ/2.

Analogously, we obtain

sup
ω∈Ω′

real
(
∥ϕ0∥L∞(D) +

ν∑
i=1

|ωi|∥ϕi∥L∞(D)

)
≲ 1 + r−1

∞∑
i=1

∥ϕj∥1/2L∞(D) <∞.

Hence, Lemma 29 applies and shows

∥∂ωuG(u
s)∥L∞(Ω) ≤ C∥us∥H1(D)∥G∥

∏
i∈u

ϱ−1
i = C∥us∥H1(D)∥G∥

∏
i∈u

βi.

This concludes the proof. □

Now, we have all the necessary ingredients to apply the QMC theory to the problem
at hand. The last theorem suggests to use product weights, i.e.,

γu :=
∏
j∈u

βj.

This leads to the following theorem.

Theorem 31. Let
∑∞

j=1 ∥ϕj∥λ/2L∞(D) < ∞. Then, a shift-averaged lattice rule with gen-

erating vector constructed by the CBC algorithm (Algorithm 1) applied to the Poisson
problem with random coefficients satisfies√

ES|Is(G(us))−Qn(S,G(us))|2 ≤ Cϕ(n)−1/(2λ)

for all n ∈ N. The constant C > 0 is independent of the dimension s ∈ N.

Proof. We already know that the integration error is bounded by√
ES|Is(G(us))−Qn(S,G(us))|2 ≤ eshn (z)∥G(us)∥Xs,γ .
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Theorem 16 shows that the shift-averaged worst-case error is then bounded by

eshn (z)2 ≤
( 1

ϕ(n)

∑
∅≠u⊆{1,...,s}

∏
j∈u

βλ
j

(2ζ(2λ)
(2π2)λ

)|u|)1/λ

=
1

ϕ(n)1/λ

( ∑
∅≠u⊆{1,...,s}

∏
j∈u

(Cλβ
λ
j )
)1/λ

=
1

ϕ(n)1/λ

(
− 1 +

s∏
j=1

(1 + Cλβ
λ
j )
)1/λ

for Cλ := 2ζ(2λ)
(2π2)λ

. The product can be estimated by

log(
s∏

j=1

(1 + Cλβ
λ
j )) =

s∑
j=1

log(1 + Cλβ
λ
j ) ≤ Cλ

s∑
j=1

βλ
j ≤ Cλ

∞∑
j=1

βλ
j <∞

by assumption on the ∥ϕj∥L∞(D). Hence, we obtain eshn (z) ≤ C̃λϕ(n)
−1/(2λ), where C̃λ

depends only on λ. It remains to estimate the norm ∥G(u)∥Xs,γ . To that end, Lemma 30
shows

∥G(us)∥2Xs,γ
=

∑
u⊆{1,...,s}

γ−1
u

∫
[−1/2,1/2]|u|

(∫
[−1/2,1/2]s−|u|

∂ωuG(u
s(ω)) dωuc

)2

dωu

≲ ∥us∥2H1(D)∥G∥2
∑

u⊆{1,...,s}

γu = ∥us∥2H1(D)∥G∥2
s∏

j=1

(1 + βj).

Analogously as before, we show that the product is bounded independently of s. This
concludes the proof. □

Remark 32. Note that the result of Theorem 31 is not optimal. A more careful analysis

shows that the condition
∑∞

j=1 ∥ϕj∥2/3L∞(D) <∞ would suffice (instead of
∑∞

j=1 ∥ϕj∥1/2L∞(D) <

∞). In this case, however, one requires POD-weights of the form

γu = |u|!
∏
j∈u

γ̃j

to bound the integration error. This makes the CBC algorithm more expensive, it costs
O(s2n) to find a good generating vector (although there is a recent work which speeds up
the CBC algorithm also for POD-weights in certain cases, see https: // arxiv. org/

abs/ 1902. 11068 or [5])

2.3. The remaining error contributions. The error estimate in (7) together with
Theorem 31 shows√

ES|E(G(u))−Qn(S,G(ush))|2 ≲ n−1/(2λ) + |G(us − ush)|+
∞∑

j=s+1

∥ϕj∥L∞(D).

Approximation of the random coefficient: Theorem 31 requires convergence of
∑∞

j=1 ∥ϕj∥λ/2L∞(D)

to get the above result. Assuming that ∥ϕj∥L∞(D) is decreasing for j → ∞, we obtain

s∥ϕs∥λ/2L∞(D) ≤
s∑

j=1

∥ϕj∥λ/2L∞(D) ≤
∞∑
j=1

∥ϕj∥λ/2L∞(D)

and hence

∥ϕs∥L∞(D) ≤ s−2/λ
( ∞∑

j=1

∥ϕj∥λ/2L∞(D)

)2/λ
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as well as
∞∑

j=s+1

∥ϕj∥L∞(D) ≤ ∥ϕs∥1−λ/2
L∞(D)

∞∑
j=s+1

∥ϕj∥λ/2L∞(D) ≤ ∥ϕs∥1−λ/2
L∞(D)

∞∑
j=1

∥ϕj∥λ/2L∞(D).

The combination of the two estimates shows
∞∑

j=s+1

∥ϕj∥L∞(D) ≤ s−2(1−λ/2)/λ
( ∞∑

j=1

∥ϕj∥λ/2L∞(D)

)2(1−λ/2)/λ
∞∑
j=1

∥ϕj∥λ/2L∞(D)

≤ s−(2/λ−1)
( ∞∑

j=1

∥ϕj∥λ/2L∞(D)

)2/λ
(9)

Approximation by FEM: Straightforward estimation of |G(us−ush)| leads to a convergence
rate of h. However, we can use the so-called Aubin-Nitsche trick to obtain a better rate
of h2.

Lemma 33. Assume G(v) =
∫
D
g(x)v(x) dx for some g ∈ L2(D). Let ĝ(ω) ∈ H1

0 (D)
denote the unique solution of asω(ĝ, v) =

∫
D
gv dx. Then, there holds

|G(us(ω)− ush(ω))| ≤ C inf
vh∈Vh

∥u(ω)− vh∥H1(D) inf
gh∈Vh

∥ĝ(ω)− gh∥H1(D),

where the constant C > 0 is independent of h and ω.

Proof. There holds

G(us − ush) =

∫
D

g(us − ush) dx = asω(ĝ, u
s − ush).

Since asω(gh, u
s − ush) = asω(u

s − ush, gh) = 0 for all gh ∈ Vh, we have

|G(us − ush)| = inf
gh∈Vh

|asω(us − ush, ĝ − gh)| ≲ ∥us − ush∥H1(D) inf
gh∈Vh

∥ĝ − gh∥H1(D).

Lemma 28 improves the above estimate to

|G(us(ω)− ush(ω))| ≲ inf
vh∈Vh

∥u(ω)− vh∥H1(D) inf
gh∈Vh

∥ĝ(ω)− gh∥H1(D)

and concludes the proof. □

To estimate infv∈Vh
∥u(ω)− v∥H1(D), we require some FEM theory.

Lemma 34. If ∂D is convex, or sufficiently smooth, f ∈ L2(D) and ∥ϕ0∥W 1,∞(D) +∑∞
j=1 ∥ϕj∥W 1,∞(D) <∞, there holds

inf
v∈Vh

∥u(ω)− v∥H1(D) ≤ Ch∥f∥L2(D).

Proof. The assumptions show that ∥A(ω, ·)∥W 1,∞(D) <∞ uniformly for all ω ∈ Ω. Hence,
we may rewrite

−div(A(ω, x)∇u(ω, x)) = −∇A(ω, x) · ∇u(x)− A(ω, x)∆u(ω, x) = f(x)

which leads to

−∆u(ω, x) = rhs(ω, x) :=
1

A(ω, x)

(
f(x) +∇A(ω, x) · ∇u(x)

)
.

Since u ∈ H1(D), we have ∇A(ω, x) · ∇u(x) ∈ L2(D) and hence the right-hand side
above is in L2(D). Thus, elliptic regularity theory (see, e.g., [2, Section 9.6]) shows

∥u∥H2(D) ≲ ∥rhs(ω, x)∥L2(D) ≲ ∥f∥L2(D) + ∥u∥H1(D),
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where the hidden constants depend only on ∥ϕ0∥W 1,∞(D) +
∑∞

j=1 ∥ϕj∥W 1,∞(D) < ∞ and

Amin > 0. The Lax-Milgram lemma shows ∥u∥H1(D) ≲ ∥f∥L2(D) and hence concludes
∥u(ω)∥H2(D) ≲ ∥f∥L2(D) with ω-independent hidden constant.

The theory of quasi-interpolation operators (see FEM lecture notes or [9]) proves for a
quasi-interpolation operator Ih : H

1(D) → Vh that

inf
v∈Vh

∥u(ω)− v∥H1(D) ≤ ∥(1− Ih)u(ω)∥H1(D) ≲ h∥u(ω)∥H2(D) ≲ h∥f∥L2(D).

This concludes the proof. □

Altogether, we have an approximation error bounded by√
ES|E(G(u))−Qn(S,G(ush))|2 ≲ n−1/(2λ) + h∥f∥L2(D) + s−2/λ+1.

If the assumptions of Lemma 33 are satisfied, we even obtain√
ES|E(G(u))−Qn(S,G(ush))|2 ≲ n−1/(2λ) + h2∥g∥L2(D)∥f∥L2(D) + s−2/λ+1.

This follows from the fact that Lemma 34 also applies to ∥ĝ − gh∥H1(Ω) since ĝ is the
solution of the same problem with different right-hand side.

2.4. Cost of the approximation. The approximate number of elements in Th isO(h−d).
On each element, we have to evaluate s-terms of A(ω, x), i.e., O(sh−d). If we use a good
preconditioner as well as an iterative solver, we can assume that the solution of the linear
system to compute ush(ω) costs O(h−d). Finally, the quadrature has a setup cost of
O(sn log(n)) (the CBC-algorithm) and an online cost of O(mnsh−d), where m ∈ N is the
number of random shifts (we assume m ≃ 1 for simplicity). Thus, to achieve an error of
ε > 0, we need to choose

n ≃ ε−2λ, h ≃ ε−1/2, s ≃ ε1/(1−2/λ).

This results in a cost estimate of O(ε−(2λ+d/2)+1/(1−2/λ).

2.5. Multi-level QMC. In the previous section, we saw that the different error con-
tributions are additive in the total error (FEM error + QMC error + truncation error).
The total cost, however, is multiplicative (FEM cost × QMC cost × truncation cost).
This can lead to very high, and in practice, unmanagable computational cost to reach a
prescribed accuracy.

On way out of this are so-called Multi-level methods. The idea is the following. We
rewrite the approximation as

Qn(G(u
s
h)) ≈

N∑
ℓ=0

Qnℓ
(G(ushℓ

− ushℓ−1
)), (10)

where ush−1
:= 0, hℓ+1 = hℓ/2, and hN := h. For nℓ = n, we have equality in the above

approximation due to the telescoping sum. The big advantage of this reformulation is,
that we can adaptively chose nℓ ≪ n in case |G(ushℓ

− ushℓ−1
)| ≪ 1. This is illustrated in

the following lemma.

Lemma 35. Under the assumptions of Theorem 31 and Lemma 34, where we additionally
assume Vhℓ−1

⊆ Vhℓ
for all ℓ ∈ N, there holds√
ES|(Is −Qnℓ

(S, ·))(G(ushℓ
− ushℓ−1

))|2 ≤ C
h2ℓ

ϕ(nℓ)1/(2λ)
,

for λ ∈ (1/2, 1] and some constant C > 0 that is independent of ℓ ∈ N.
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Proof. First note that Lemma 27–30 remain valid if we replace us by ush. This is due to
the fact that we only used that us is the weak solution of a PDE in a Hilbert space. This
is also true for ush. Moreover, the constants are independent of h > 0 (Excercise: verify
that yourself). Define F (ω) := G(ushℓ

−ushℓ−1
), which is analytic in each argument due to

Lemma 27. The proofs of Lemma 29–30 show that

|∂ωuF (ω)| ≤
( ∞∏

i=1

βi

)
∥F∥L∞(Ω′).

Lemma 33 shows

∥F∥L∞(Ω′) ≤ sup
ω∈Ω′

|G(us(ω)− ushℓ
(ω))|+ |G(us(ω)− ushℓ−1

(ω))|

≲ inf
vh∈Vhℓ−1

∥u(ω)− vh∥H1(D) inf
gh∈Vhℓ−1

∥ĝ(ω)− gh∥H1(D),

where we used that Vhℓ−1
⊆ Vhℓ

and hence infvh∈Vhℓ−1
. . . ≥ infvh∈Vhℓ

. . .. Lemma 34

implies

∥F∥L∞(Ω′) ≲ h2ℓ∥g∥L2(D)∥f∥L2(D).

Thus, with the arguments from the proof of Theorem 31, we obtain√
ES|(Is −Qnℓ

(S, ·))F |2 ≲ h2ℓ
ϕ(n)1/(2λ)

.

This concludes the proof. □

This leads to the following theorem.

Theorem 36. Assume that Lemma 35 holds for all λ ∈ (1/2, 1]. Choosing nℓ ≃ (hℓ/hL)
4λ

in each term of the multi-level expansion (10) gives√√√√ES|(Is(G(us))−
L∑

ℓ=0

Qnℓ
(S,G(ushℓ

− ushℓ−1
))|2 ≤ CLh2L,

where L ≃ log2(hL) and C > 0 is independent of L.

Proof. There holds

(Is(G(u
s))−

L∑
ℓ=0

Qnℓ
(S,G(ushℓ

− ushℓ−1
))

= Is(G(u
s − ushL

)) +
L∑

ℓ=0

(Is −Qnℓ
(S, ·))G(ushℓ

− ushℓ−1
)).

The first term is bounded by Lemma 33 and Lemma 34 in the sense

|Is(G(us − ushL
))| ≲ h2L∥g∥L2(D)∥f∥L2(D).

The remaining term is bounded by Lemma 35 in the sense√√√√ES

∣∣∣ L∑
ℓ=0

(Is −Qnℓ
(S, ·))G(ushℓ

− ushℓ−1
))
∣∣∣2 ≲ L∑

ℓ=0

h2ℓ

n
1/(2λ)
ℓ

,
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where we used ϕ(n) ≳ n−1+δ for all δ > 0 and n ∈ N. With hℓ ≃ 2−ℓ, the choice of nℓ

leads to

h2ℓ

n
1/(2λ)
ℓ

≃ h2L.

This concludes the proof. □

Combining the above error estimate with the estimates for the remaining error contri-
butions, we obtain the following: If all assumptions are satisfied, there holds√√√√ES

∣∣∣E(G(u))− L∑
ℓ=0

Qnℓ
(S,G(ushℓ

− ushℓ−1
))
∣∣∣2 ≲ Lh2L + s−2/λ+1.

Thus, to achieve an error of ε > 0, we need to choose

hL ≃ ε1/2 and s ≃ ε1/(−2λ+1)

and hence L ≃ 1
2
log(ε) Given hL, we compute that hℓ ≃ 2L−ℓε1/2 and hence nℓ ≃ 22λ(L−ℓ).

The cost for each term of the multi-level expansion is again given by

FEM cost× truncation cost×QMC cost

In our case, this leads O(h−d
ℓ nℓs) = O(ε−d/2+1/(1−2/λ)2(L−ℓ)(4λ−d)). Summing up over all

L ≃ | log2(hL)| ≃ | log2(ε)| levels gives a total cost estimate of

O
(
ε−d/2+1/(1−2/λ)

L∑
ℓ=0

2(L−ℓ)(4λ−d)
)
=

{
O(ε−d/2+1/(1−2/λ)) 4λ < d,

O(| log2(ε)|ε−2λ+1/(1−2/λ)) else,

where we used
∑L

ℓ=0 2
(L−ℓ)(4λ−d) ≲ 1 for 4λ < d and

∑L
ℓ=0 2

(L−ℓ)(4λ−d) ≤ (L+1)2L(4λ−d) ≃
| log(ε)|ε2λ−d/2 otherwise. Compared to the single-level approach of the previous section,
the exponent in the cost estimate contains only the maximum of d/2 and λ instead of
their sum. This might not seem like much initially, however, for λ = 1/2 + δ with small
δ > 0, d = 3 and ε = 10−2 (an error of one percent is a standard engineering requirement),
the cost advantage of the multi-level algorithm is

≈ 6 · 105 versus ≈ 107 computational operations.

This can mean the difference between hours vs. days of computational time.

3. The random parameter A(x,ω)

The main goal of this section (based on [10]) is to introduce the concept of stochastic
processes, i.e., random variables which depend on one or more parameters and to derive
the Karhuen-Loeve expansion.

3.1. Borel sets. Let (X , d) denote a metric space. The Borel σ-algebra (σ-field) B =
B(X ) is the smallest σ-algebra in X that contains the topology (all open subsets) of X .
A set A ∈ B(X ) is also called a Borel set.

Remark 37 (What is a σ-algebra?). A sigma-algebra on a set X is a subset Σ ⊆ P(X )
of the power set of X , which satisfies:

(1) X ∈ Σ,
(2) Σ is closed under complementation, i.e., A ∈ Σ =⇒ X \ A ∈ Σ,
(3) Σ is closed under countable unions, i.e., A1,A2, . . . ∈ Σ =⇒

⋃∞
i=1Ai ∈ Σ.

The smallest σ-algebra is Σ := {∅,X}. The pair (X ,Σ) is called a measurable space.
For a subset A ⊆ P(X ), we denote by σ(A) the smallest σ-algebra which contains A.

33



Lemma 38. If X is a separable metric space, then B(X ) equals the σ-algebra generated
by the open (or closed) balls of X .

Proof. Let A :=
{
B ⊆ X : B is open (or closed) ball in X

}
. Then, obviously, there

holds σ(A) ⊆ B(X ). Since X is seperable, we find a countable and dense set D ⊆ X .
Moreover, let Br(x) denote the open (or closed) ball in X with center x ∈ X and radius
r > 0 (or r ≥ 0). Given an open (or closed) set U ⊆ X and x ∈ U , we define yx ∈
D ∩ U and rx > 0 (or rx ≥ 0) sufficiently small with rx ∈ Q being rational such that
x ∈ Brx(yx) ⊆ U . From this, we obtain

U =
⋃
x∈U

Brx(yx),

which is a countable union. Hence U ∈ σ(A) and we conclude σ(A) = B(X ). □

A function f : X1 → X2 between metric spaces with corresponding σ-algeras Σ1 and
Σ2 is called measurable iff

f−1(A) =
{
x ∈ X1 : f(x) ∈ A

}
∈ Σ1 for all A ∈ Σ2.

A function µ : B(x) → [0,∞) such that

(1) µ(∅) = 0,
(2) A1,A2, . . . are mutually disjoint =⇒ µ(

⋃∞
i=1 Ai) =

∑∞
i=1 µ(Ai)

is called a finite Borel measure. If additionally, there holds µ(X ) = 1, µ is called a Borel
probability measure. Given a probability measure µ on X1 and a measureable function
f : X1 → X2, we may define the push-forward measure µf on (X2,Σ2) via

µf (A) := µ(f−1(A)) for all A ∈ Σ2.

Lemma 39. The push-forward measure µf is a Borel (probability) measure.

Proof. Obviously, f−1(∅) = ∅ and hence µf (∅) = 0. Moreover, if A1,A2, . . . are mutually
disjoint, there holds

f−1(Ai) ∩ f−1(Aj) = ∅ for all i ̸= j

and hence

µf (
∞⋃
i=1

Ai) = µ(f−1(
∞⋃
i=1

Ai)) =
∞∑
i=1

µ(f−1(Ai)) =
∞∑
i=1

µf (Ai).

Finally, f−1(X2) = X1 and hence µf (X2) = µ(X1) = 1 (for probability measures) con-
cludes the proof. □

Remark 40. In probability theory, the probability measure µ is often denoted by P and
the function f is then called a random variable. Then, the common notation for the
push-forward measure is

P(f ∈ A) := µf (A) (11)

for all A ∈ Σ2. This notation allows to forget about the domain of definition of f and
just consider the realizations (the elements in the range) of f .

The common definition of expectation E(·) can be reduced to the domain of f in the
following sense: If µf is integrable, we obtain

E(f) :=
∫
X1

f(x) dµ(x) =

∫
X2

x dµf (x).
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3.2. Gaussian processes. Before we proceed, we will require some definitions.

Definition 41 (second order). A real-valued stochastic process X : D × Ω → R is called
second-order if X(x) : Ω → R ∈ L2(Ω) for all x ∈ D. This allows us to define the
mean function µ(x) := E(X(x)) =

∫
Ω
X(x, ω) dP(ω) as well as the covariance function

ϱ(x, y) := E(X(x)X(y)) for all x, y ∈ D.

Definition 42 (real-valued Gaussian process). A second-order process X : D × Ω →
R is called Gaussian if (X(x1), . . . , X(xn)) : Ω → Rn follows a multivariate Gaussian
distribution for any x1, . . . , xn ∈ D and all n ∈ N.

A central stochastic process is the Brownian motion, which was discovered when Robert
Brown studied the seemingly random movement of pollen in a fluid (for more detailed
historic background the corresponding Wikipedia page is always a good resource). A
Brownian motion is also often called a Wiener process (after Norbert Wiener) and hence
often denoted by W .

Definition 43 (Brownian motion (Wiener process)). A Brownian motion is a real-valued
Gaussian process with D = [0,∞), continuous sample paths, mean function µ(t) = 0, and
covariance function Cov(s, t) = min{s, t}.

We will show later, that a stochastic process satisfying the definition of a Brownian
motion actually exists. For now, assume that W (t) is a Brownian motion. It is easy to
see that

E((W (t2)−W (t1))(W (s2)−W (s1)))

= Cov(W (t2),W (s2))− Cov(W (t1),W (s2))

− Cov(W (t2),W (s1)) + Cov(W (t1),W (s1))

= min{t2, s2} −min{t1, s2} −min{t2, s1}+min{t1, s1} = 0

for t1 ≤ t2 ≤ s1 ≤ s2. This shows that the increments W (t2) −W (t1) are uncorrelated.
Since two increments have joint Gaussian distribution by definition, the increments are
even independent. With ti = si, i = 1, 2, we also find that

Var(W (t2)−W (t1)) = |t2 − t1|
and hence W (t)−W (s) ∼ N(0, |t− s|).

Remark 44 (Reminder: Independence of random variables). Two subsets Ω1,Ω2 ⊆ Ω
of a probability space (Ω,ΣΩ,P) are called independent iff P(Ω1 ∩ Ω2) = P(Ω1)P(Ω2).
Two sub-σ-algebras Σ1,Σ2 ⊆ ΣΩ are called independent if all pairs of elements (Ω1,Ω2) ∈
Σ1×Σ2 are independent. Two random variables fi : Ω → X for a measurable space (X ,Σ)
are called independent if the σ-algebras f−1

i (Σ), i = 1, 2 are independent.

Due to the above considerations, we are able to give another definition of a Brownian
motion:

Definition 45 (Brownian motion (second definition)). A Brownian motion is a real-
valued stochastic process W on D = [0,∞) such that

(1) W (0) = 0 almost surely,
(2) the increments satisfy W (t)−W (s) ∼ N(0, |t− s|) and increments over disjoint

intervals are independent,
(3) W has continuous sample paths.

Lemma 46. The two definitions of the Brownian motion are equivalent.
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Proof. We already argued that Definition 43 implies Definition 45 (W (0) is Gaussian
with zero variance and zero mean and hence W (0) = 0. To see that the second definition
implies the first one, we first observe that

µ(t) = E(W (t)) = E(W (t)−W (0)) + E(W (0)) = 0

since W (0) = 0 and W (t)−W (0) ∼ N(0, t). Second, there holds for t > s

Cov(W (t),W (s)) = Cov(W (t)−W (s),W (s)−W (0)) + Cov(W (s),W (s))

= 0 + E((W (s)−W (0))2) = s,

since W (s) −W (0) ∼ N(0, s). By symmetry of the covariance functions, we conclude
Cov(W (t),W (s)) = min{t, s}. □

The second definition leads to a straightforward algorithm for sampling a Brownian
motion:

Algorithm 3. Input: evaluation points t1 < t2 < . . . < tn with t1 = 0.
Set W (0) = 0. For j = 2, . . . , n do:

(1) Generate standard normal random number zj (randn() in Matlab).
(2) Define W (j) := W (j − 1) +

√
tj − tj−1zj.

3.3. Gaussian processses and the covariance function. Given the domain D, let
RD denote the set of all functions f : D → R, and let B(RD) denote the smallest σ-algebra
that contains all sets

A =
{
f ∈ RD : [f(x1), . . . , f(xN)] ∈ F

}
(12)

for N ∈ N, x1, . . . , xN ∈ D, and F ∈ B(RN). Note that B(RD) is the Borel σ-algebra
with respect to the topology of pointwise convergence (not a metric space, however). By
definition, the sample paths of a real-valued stochastic process X(·, ω) belong to RD.

Lemma 47. Let (Ω,Σ,P) denote the underlying probability space. The map ω 7→ X(·, ω)
from (Ω,Σ) to the measurable space (RD,B(RD)) is measurable. Thus, the sample path
is a RD valued random variable.

Proof. LetA ∈ B(RD) as defined in (12) and the corresponding F ∈ B(RN). The topology
of RN is countably generated and hence it suffices to consider F = F1× . . .×FN for open
Fi ⊆ R. We consider{

ω ∈ Ω : X(·, ω) ∈ A
}
=

{
ω ∈ Ω : [X(x1, ω), . . . , X(xN , ω)] ∈ F

}
=

N⋂
i=1

X(xi, ·)−1(Fi).

Since the X(xi, ·) are Σ-measurable functions by definition, we show that
{
ω ∈ Ω :

X(·, ω) ∈ A
}
∈ Σ and hence conclude the proof. □

With this, we may define independence of processes.

Definition 48. (1) Two real-valued processes X(·), Y (·) are independent processes if
the associated (RD,B(RD)) random variables are independent. This is equivalent
to the fact that

[X(x1), . . . , X(xM)] and [Y (y1), . . . , Y (yM)]

are independent multi-variate random variables for all M ∈ N and all xi, yi ∈ D.
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(2) We say f1, f2 : D → R are independent sample paths of a real-valued process X(·)
if fi(x) = Xi(x, ω) for some ω ∈ Ω, where Xi(·) are i.i.d. processes with the same
distribution as X(·) (if they have the same push-forward measure PX(·) = P◦X−1

on B(RD)).

The following theorem states that stochastic processes are essentially characterized by
their projections on finitely many evaluation points.

Theorem 49 (Daniell-Kolmogorov Theorem). Suppose that for each set {x1, . . . , xN} ⊂
D, there exists a probability measure µx1,...,xN

on RN such that

(1) for any permutation π of {1, . . . , N} and all F1, . . . , FN ∈ B(R),

µxπ(1),...,xπ(N)
(Fπ(1) × . . .× Fπ(N)) = µx1,...,xN

(F1 × . . .× FN),

(2) for M < N and any F ∈ B(RM)

µx1,...,xN
(F × RN−M) = µx1,...,xM

(F ).

Then, there exists a stochastic process X(·) with finite-dimensional distributions P[X(x1),...,X(xN )] =
µx1,...,xN

for all x1, . . . , xN ∈ D. If X(·) and Y (·) are two such processes, then there holds
PX = PY on B(RD).

Remark 50. We note that each stochastic process satisfies the conditions (1–2) of the
above theorem. To see that, note that

P[X(x1),...,X(xN )](F1 × . . .× FN) = P(
N⋂
i=1

X(xi)
−1(Fi)) = P(

N⋂
i=1

X(xπ(i))
−1(Fπ(i)))

= P[X(xπ(1)),...,X(xπ(N))](Fπ(1) × . . .× Fπ(N)).

Moreover, there holds

P[X(x1),...,X(xN )](F × RN−M) = P
(
[X(x1), . . . , X(xM)]−1(F ) ∩ [XM+1, . . . , XN ]

−1(RN−M)
)

= P[X(x1),...,X(xM )](F ).

We recall that a positive (semi-)definite function ϱ : D × D → R satisfies for all
x1, . . . , xN ∈ D and all a1, . . . , aN ∈ R that

N∑
i,j=1

aiajϱ(xi, xj) > (≥)0.

This is equivalent to the fact that the induced matrix C ∈ RN×N , Cij := ϱ(xi, xj) is
positive (semi-)definite.

Theorem 51. The following statements are equivalent:

(i) There exists a real-valued second order stochastic process X(·) with mean function
µ and covariance function Cov.

(ii) Let µ : D → R and Cov: D × D → R with Cov being symmetric and positive
semi-definite.

Particularly, (ii) even implies existence of a Gaussian process.
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Proof of (i) =⇒ (ii). The functions are well-defined since the process is second-order.
There holds for any x1, . . . , xN ∈ D and a1, . . . , aN ∈ R that

N∑
i,j=1

aiajCov(xi, xj) = E
( N∑

i,j=1

ajak(X(xi)− µ(xi))(X(xj)− µ(xj))
)

= E
( N∑

i=1

aj(X(xi)− µ(xi))
)2

≥ 0.

Obviously, Cov(x, y) is also symmetric. □

Proof of (ii) =⇒ (i). Define the covariance matrix C ∈ RN×N , Cij := Cov(xi, xj). By
definition, C is symmetric and positive semi-definite. Hence, we may consider a ran-
dom variable Y obeying a multivariate Gaussian distribution Y ∼ N(0,C). We define
µx1,...,xN

:= PY . Theorem 49 applies since µxπ(1),...,xπ(N)
is the push-forward measure of

Ỹ ∼ N(0, C̃) with C̃ij := Cπ(i),π(j). Hence

µxπ(1),...,xπ(N)
(Fπ(1) × . . . Fπ(N)) = P(Ỹ ∈ Fπ(1) × . . . Fπ(N))

= P(Y ∈ F1 × . . . FN) = µx1,...,xN
(F1 × . . . FN).

Moreover, there holds

µx1,...,xN
(F × RN−M) = P([Y1, . . . , YM ] ∈ F ) = µx1,...,xM

(F ).

This follows from the fact, that the marginal distribution of a multi-variate Gaussian is
obtained by just dropping the corresponding rows and columns in the covariance matrix,
i.e., we consider

µx1,...,xN
(F × RN−M) =

∫
F

∫
RN−M

(2π)−N/2det(C)−1/2e−
1
2
xTC−1x dx.

Since C is symmetric, we obtain a block-Cholesky factorization, i.e., C = LDLT , where

D =

(
D1 0
0 D2

)
with D1 ∈ RM×M and D2 ∈ R(N−M)×(N−M) and L is the corresponding block-lower-
triangular matrix with two identity block in the diagonal. This allows us to transform
the integral with (y1,y2) = L−1x to

µx1,...,xN
(F × RN−M) =

∫
F

(2π)−M/2det(D1)
−1/2e−

1
2
(y1)

TD−1
1 y1 dy1

×
∫
RN−M

(2π)−(N−M)/2det(D2)
−1/2e−

1
2
yT
2 D−1

2 y2 dy2

= µx1,...,xM
(F ).

Therefore, Theorem 49 guarantees the existence of a real valued stochastic process Y (·)
with the finite-dimensional distributions µx1,...,xN

. In particular, the distribution of [Y (x), Y (y)]
is

[Y (x), Y (y)] ∼ N
(
0,

(
Cov(x, x),Cov(x, y)
Cov(y, x),Cov(y, y)

))
.

This shows that the convariance function of Y (·) is Cov(x, y). Since Y has zero mean,
we conclude the proof with X := Y + µ. □
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Figure 5. Matern covariance kernels with different parameters λ and ν.

Corollary 52. The probability distribution PX on (RD,B(RD)) of a real-valued Gaussian
process X(·) is uniquely determined by its mean µ : D → R and convariance function
Cov: D ×D → R.

Proof. Let X(·) and Y (·) denote Gaussian processes with the same mean and covari-
ance functions. We know that the finite-dimensional distributions P[X(x1),...,X(xN )] and
P[Y (x1),...,Y (xN )] are multivariate Gaussian. A multivariate Gaussian distribution is uniquely
determined by its mean and covariance information. Hence X(·) and Y (·) have the same
finite dimensional distributions. Theorem 49 concludes that PX = PY on (RD,B(RD)).

□

The most prominent examples of covariance functions are the Gaussian and the expo-
nential kernel, defined by:

Cov(x, y)Gaussian := e−|x−y|2/λ and Cov(x, y)exponential := e−|x−y|/λ,

where λ ≥ 0 is the so-called correlation length. Those functions are limit cases of the
more general Matérn class of covariance functions

Cov(x, y)Matérn :=
21−ν

Γ(ν)

(√
2ν

|x− y|
λ

)ν

Kν

(√
2ν

|x− y|
λ

)
,

where Kν is the modified Bessel function of the second kind (again Wikipedia is your
friend) and λ, ν ≥ 0. The parameter ν is a smoothness parameter and ν = 1/2 gives the
exponential covariance whereas ν → ∞ gives the Gaussian covariance. See also Figure 5
for the illustration of the kernels with different parameters. A standard result in measure
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theory (Bochner’s theorem) shows that Cov is a positive definite function if and only if
the Fourier transform is a positive (pointwise large than zero) function. This can be used
to show that Cov(x, y)Matérn is positive definite.

Lemma 53. The covariance function Cov(s, t) := min{s, t} is symmetric and positive
semi-definite.

Proof. While symmetry is obvious, we need to check for positivity. To that end let
t1, . . . , tn ≥ 0 and a1, . . . , an ∈ R. Without loss of generality, we may assume ti ≤ ti+1

for all i = 1, . . . , n − 1. Define the matrix C ∈ Rn×n with Cij := Cov(ti, tj) = tmin{i,j}.
This results in

C =


t1 t1 . . . t1
t1 t2 . . . t2
...
t1 t2 . . . tn

 =
n∑

m=1

cmEm, with Em :=

(
0(n−m)×(n−m) 0(n−m)×m

0m×(n−m) 1m×m,

)

with coefficients cm := tn−m+1−tn−m ≥ 0. It is easy to see that x·Emx = (
∑m

n+1−m xj)
2 ≥

0 is positive semi-definite. Since also all cm are non-negative, we obtain that C is positive
semi-definite. This concludes the proof. □

Remark 54. Lemma 53 together with Theorem 51 imply that there exists a stochastic
process X(·) on [0,∞) which satisfies all properties of a Brownian motion except continu-
ity. We will see later, that the sample path regularity can be deduced from the regularity
of the covariance function and hence show that a Brownian motion really exists.

A very straightforward way to sample Gaussian processes is via the covariance matrix.
Say one wants to know the values of a Gaussian process X(·) at the nodes x1, . . . , xn.
Then, one can assemle the covariance matrix C ∈ Rn×n, Cij := Cov(xi, xj) and the mean
vector µ ∈ Rn, µi := µ(xi). Next, one computes a square-root C = RTR and evaluates

RT bx+ µ,

where x ∈ Rn are i.i.d standard normal random numbers (e.g., generated by randn()

in Matlab). It is very easy to see that the resulting process has mean function zero.
Moreover, the covariance matrix

E((RTx)i(R
Tx)j) =

n∑
k,m=1

(RT )ik(R
T )jmE(xkxm) =

n∑
k=1

(RT )ikRkj = Cij

equals that of X(x1, . . . , xn). Hence, we produced exact samples of X(·) at the nodes

x1, . . . , xn. Note that R = RT = C1/2 is only one of the possible choices, another
one being the Cholesky factorization with upper triangular R. When done in Matlab
with chol, one has to be aware of the fact that Matlab often uses pivoting to increase
the stability of the decomposition and hence implicitly permutes the vector (x1, . . . , xn).
Some Python libraries return the upper triangle of the Cholesky factorization by default,
and hence one has to use the transposed return value. See Figure 6 for some samples of
Gaussian processes.

3.4. The Karhunen-Loève expansion. The KL-expansion is an attempt to separate
spatial and random dependencies of stochastic processes. Given a stochastic process X(·)
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Figure 6. Samples of Gaussian processes on D := [0, 1]2 (Gaussian ran-
dom fields). The first line of pictures corresponds to the exponential covari-
ance, the second line corresponds to the Gaussian covariance, and the third
line corresponds to a non-stationary covariance function ϱ(x, y) which forces
larger covariance in the lower-left corner. (Stationary covariance functions
satisfy ϱ(x, y) = ρ(|x−y|) for some function ρ(·) and thus produce samples
with similar irregularities in the whole domain D.)

with mean function µ(x), we are interested in writing the sample paths X(x, ω) − µ(x)
in a orthonormal basis, i.e.,

X(x, ω) = µ(x) +
∞∑
j=1

γj(ω)ϕj(x), (13)
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where the (ϕj)j∈N are a L2(D)-orthonormal basis and the coefficients γj are random
variables given by

γj(ω) :=

∫
D

(X(x, ω)− µ(x))ϕj(x) dx.

Let Cov(x, y) denote the covariance function of X and define the integral operator
C : L2(D) → L2(D) by

(Cf)(x) :=
∫
D

Cov(x, y)f(y) dy.

The expansion (13) is called KL-expansion if the ϕj are chosen as eigenfunctions of C.
Lemma 55. If X ∈ L2(Ω, L2(D)), there holds µ ∈ L2(D) as well as Cov(·, ·) ∈ L2(D×D)
and the sample paths X(·, ω) ∈ L2(D) for almost all ω ∈ Ω.

Proof. The assumption ∥X∥L2(Ω;L2(D)) < ∞ implies ∥X(·, ω)∥L2(D) < ∞ almost every-
where in Ω and hence X(·, ω) ∈ L2(D) almost surely. Jensen’s inequality implies

∥µ∥2L2(D) =

∫
D

µ(x)2 dx ≤
∫
D

E(X(x)2) dx

=

∫
D

∫
Ω

|X(x, ω)|2 dx dω =

∫
Ω

∫
D

|X(x, ω)|2 dx dω = ∥X∥2L2(Ω,L2(D)) <∞.

Finally, a Hölder inequality shows∫
D×D

Cov(x, y)2 dx dy =

∫
D×D

(
E((X(x)− µ(x))(X(y)− µ(y)))

)2

dx dy

≤
(∫

D

E((X(x)− µ(x))2) dx
)2

.

This is finite due to X ∈ L2(Ω, L2(D)) and we see Cov ∈ L2(D×D). This concludes the
proof. □

Lemma 56. Consider a process X ∈ L2(Ω, L2(D)). Then,

X(x, ω) = µ(x) +
∞∑
j=1

√
νjϕj(x)ξj(ω),

where the sum converges in L2(Ω, L2(D)),

ξj((ω) := ν
−1/2
j

∫
D

(X(x, ω)− µ(x))ϕj(x) dx,

and the (νj, ϕj) denote the eigenvalues and eigenfunctions of the covariance operator
C : L2(D) → L2(D). The random variables ξj have mean zero, unit variance and are
pairwise uncorrelated. If the process is Gaussian, then ξj ∼ N(0, 1), i.i.d.

Proof. The theory of Hilbert-Schmidt operators shows that C : L2(D) → L2(D) is a com-
pact operator since Cov ∈ L2(D × D) as shown in Lemma 55. Therefore, the spectral
theorem provides an orthonormal basis (ϕj)j∈N of eigenfunctions of C. Since∫

D

C(f)(x)f(x) dx =

∫
D

∫
D

Cov(x, y)f(y)f(x) dx, dy

=

∫
D

∫
D

E((X(x)− µ(x))(X(y)− µ(y)))f(y)f(x) dx dy

= E(
(∫

D

(X(x)− µ(x))f(x) dx
)2

) ≥ 0,
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we see that the corresponding eigenvalues νj are non-negative. Define the truncated
expansion

XJ(x, ω) := µ(x) +
J∑

j=1

√
νjϕj(x)ξj(ω).

Since (ϕj)j∈N is an ONB of L2(D), we have XJ(·, ω) → X(·, ω) in L2(D) almost every-
where in Ω and moreover, we have

∥XJ(·, ω)∥L2(D) ≤ ∥X(·, ω)∥L2(D)

and hence XJ → X in L2(Ω, L2(D)) by the dominated convergence theorem. Finally, we
see that

Cov(ξi, ξj) = ν
−1/2
i ν

−1/2
j E

(∫
D

∫
D

(X(x)− µ(x))ϕi(x)(X(y)− µ(y))ϕj(y) dx dy
)

= ν
−1/2
i ν

−1/2
j

∫
D

∫
D

Cov(x, y)ϕi(x)ϕj(y) dx dy = ν
−1/2
i ν

−1/2
j

∫
D

C(ϕi)(x)ϕj(x) dx.

Since the ϕj are eigenfunctions of C and orthogonal in L2(D), the last expression is zero
for i ̸= j and one for i = j. This shows the statement about correlation and variance.
If X is Gaussian, the ξj are Gaussian since they are linear functions of X. Since the ξi
and ξj then have joint Gaussian distribution Cov(ξi, ξj) = 0 implies that ξ and ξj are
independent. This concludes the proof. □

3.5. Sample path continuity. For practical computations, the regularity of the random
coefficient in the spatial variable x ∈ D is important. After all, to compute the stiffness
matrix of the FEM, one needs to compute integrals of the form∫

T

A(x,ω)p(x) dx

for a finite element T ⊆ D and polynomials p of a certain degree (degree zero for lowest
order FEM) by use of quadrature. In the following, we show that x 7→ A(x,ω) is
Hölder continuous almost surely and hence classical quadrature rules produce a good
approximation. Recall the Hölder norm of exponent 0 < α ≤ 1, i.e.,

|f |Cα(D) := sup
x,y∈D

|f(x)− f(y)|
|x− y|α

.

We also recall Chebyshev’s inequality bounding the deviation from the mean for a random
variable X and k > 0, p ∈ N

P(|X − E(X)| ≥ k) ≤ E(|X − E(X)|p

kp
.

Remark 57. Note that any (sufficiently general) process X(·) can not have more regular
sample paths than its mean function µ(x) := E(X(x)). Hence, we assume vanishing mean
in the following. For sufficiently smooth µ(x), we can just consider sample path regularity
of X(·)− µ(·).

Definition 58. We say that a process Y is a continuous version of X, if Y = X for
almost all ω ∈ Ω and Y has continuous sample paths.

Theorem 59. Let D ⊆ Rd and X(·) a stochastic process with vanishing mean such that,
for some p, r,K > 0, there holds

E
(
|X(x)−X(y)|p

)
≤ K|x− y|d+r
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for all x, y ∈ D. Then, there exists a continuous version of X(·). If r > pα for some
α > 0, there even exists a Hölder continuous version of X(·) with Hölder exponent α.

Lemma 60. Suppose that X(·) and Y (·) are stochastic processes with vanishing mean
such that

(i) X(x) = Y (x) almost surely for x in a dense subset of D,
(ii) all sample paths of Y (·) are continuous,
(iii) for some p, r,K > 0

E
(
|X(x)−X(y)|p

)
≤ K|x− y|r

for all x, y ∈ D.

Then, Y (·) is a continuous version of X(·).

Proof. Fix x ∈ D. Since X(x) = Y (x) in a dense subset of D, we may choose xn ∈ D
such that X(xn) = Y (xn) and |xn − x| ≤ 2−n. Chebyshev’s inequality shows

P(|Y (xn)−X(x)| ≥ ε) = P(|X(xn)−X(x)| ≥ ε) ≤ E(|X(xn)−X(x)|p)
εp

≤ Kε−p2−nr.

Let εn := 2−nr/(2p) and Fn := {|Y (xn) −X(x)| ≥ εn}. Then, we have
∑∞

n=1 P(Fn) < ∞
and the Borel-Cantelli lemma shows

P(lim sup
n→∞

Fn) = P(
∞⋂
n=1

∞⋃
m=n

Fm) = 0.

Thus, for almost all ω ∈ Ω, we find n(ω) ∈ N such that |Y (ω, xn)−X(ω, x)| ≤ εn for all
n > n(ω). By taking n → ∞ and by continuity of Y (ω, ·), we see Y (x) = X(x) almost
surely in Ω and hence conclude the proof. □

Proof of Theorem 59, (Continuity). For n ∈ N, let Tn denote a triangulation of D such
that each triangle T ∈ Tn satisfies |T | ≃ 2−dn and diam(T ) ≃ 2−n. Note that those
assumptions already imply uniform shape regularity of the Tn. Moreover, we assume that
Tn+1 is a refinement of Tn for all n ∈ N. Let Yn(·) be the piecewise linear interpolation of
X(·) on Tn. We show that Yn(·) converges almost surely to a limit point Y (·) in C(D).
To that end, note that on an element T ∈ Tn, the largest difference between Yn+1 and Yn
occurs on a new node xT ∈ T of Tn+1 which is not a node of Tn. Since xT =

∑d+1
i=1 αT,ixT,i

is a convex combination of the nodes xT,i of T , we obtain

∥Yn+1 − Yn∥L∞(T ) ≤ |Yn+1(xT )− Yn(xT )| = |Yn+1(xT )−
d+1∑
i=1

αT,iYn(xT,i)|

≤
d+1∑
i=1

αT,i|Yn+1(xT )− Yn(xT,i)| =
d+1∑
i=1

αT,i|X(xT )−X(xT,i)|

where we used that the Yn are interpolations of X. Hence, we see that

P(∥Yn+1 − Yn∥L∞(T ) ≥ ε) ≤
d+1∑
i=1

P(|X(xT )−X(xT,i)| ≥ ε).

Chebyshev’s inequality and the assumptions on X(·) show

P(|X(xT )−X(x)| ≥ ε) ≤ E(|X(xT )−X(x)|p)
εp

≤ K
|xT − x|d+r

εp
.
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Altogether, this shows

P(∥Yn+1 − Yn∥L∞(T ) ≥ ε) ≤ (d+ 1)Kε−p2−n(d+r).

Summing up over all the O(2dn) elements of Tn, we obtain

P(∥Yn+1 − Yn∥L∞(D) ≥ ε) ≤
∑
T∈Tn

P(∥Yn+1 − Yn∥L∞(T ) ≥ ε) ≤ (d+ 1)Kε−p2−nr.

Choosing εn = 2−(1−δ)nr/p) for some δ > 0 and n ∈ N, we end up with P(∥Yn+1 −
Yn∥L∞(D) ≥ εn) ≲ 2−δnr and hence

∞∑
n=1

P(∥Yn+1 − Yn∥L∞(D) ≥ εn) <∞.

Hence, for Fn := {∥Yn+1−Yn∥L∞(D) ≥ εn}, the Borel-Cantelli lemma shows that lim supn→∞ Fn =⋂∞
n=1

⋃∞
m=n Fn has probability zero. Hence, for almost all ω ∈ Ω exists n(ω) such that

for n > n(ω)

∥Yn+1(ω)− Yn(ω)∥L∞(D) ≤ εn

almost surely. Since εn := 2−(1−δ)nr/p, almost all ω ∈ Ω satisfy for n ≥ n(ω) that

∥Y − Yn∥L∞(D) ≤
∞∑
k=n

εk ≤ 2−(1−δ)nr/p 1

1− 2−(1−δ)r/p
. (14)

Thus, Yn = Y0+
∑n

k=1(Yk −Yk−1) converges absolutely in C(D) for almost all ω. Finally,
define

Y :=

{
limn→∞ Yn the sum converges,

Y0 otherwise.

Then, Y is a well-defined C(D)-random variable such that Yn → Y in C(D) almost
surely. Moreover, Y = Yn(x) = X(x) for all nodes x of Tn for all n ∈ N. Since⋃

n∈N nodes of(Tn) ⊂ D is dense, Lemma 60 applies and concludes the Y = X is con-
tinuous almost surely. □

Proof of Theorem 59 (Hölder continuity). Just as in the first part of the proof (Continu-
ity), we have for all x, x′ ∈ T ∈ Tn that

P(
|X(x)−X(x′)|

hαT
≥ ε/hαT ) = P(|X(x)−X(x′)| ≥ ε) ≤ K

|x− x′|d+r

εp
.

Note that for the elementwise affine function Yn, there holds

|Yn|Cα(T ) = max
x ̸=y∈nodes of T

Yn(x)− Yn(y)

|x− y|α
≲ max

x,y∈nodes of T

Yn(x)− Yn(y)

hαT
,

where the hidden constant depends only on the shape-regularity of Tn and α > 0. With
ε = hαT and Yn(x) = X(x) for all nodes x of T , this shows

P(|Yn|Cα(T ) ≥ 1) ≤ Khd+r−pα
T .

Summing up over all T ∈ Tn (note that #T ≃ h−d
T ) shows

P(max
T∈Tn

|Yn|Cα(T ) ≥ 1) ≲ hr−pα
T ≃ 2−n(r−pα).
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With r > pα, we define Fn := {maxT∈Tn |Yn|Cα(T ) ≥ 1} ⊆ Ω and observe∑
n∈N

P(Fn) <∞.

Again, the Borel-Cantelli Lemma implies P(lim supn→∞ Fn) = 0 and hence for almost
all ω ∈ Ω, we find m(ω) ∈ N such that ω /∈ Fn for all n ≥ m(ω). Recall the uniform
convergence (14) for all n ≥ n(ω) and almost all ω ∈ Ω. With r > αp, we may choose
δ > 0 sufficiently small such that (1− δ)r/p ≥ α, and hence obtain

∥Y − Yn∥L∞(D) ≤ C2−nα for all n ≥ n(ω).

Given ω ∈ Ω, let x, y ∈ D sufficiently close such that there exists n ≥ max{n(ω),m(ω)}
and Tx, Ty ∈ Tn with Tx ∩ Ty ̸= ∅ and x ∈ Tx, y ∈ Ty. Let z ∈ Tx ∩ Ty such that
max{|x−z|, |z−y|} is minimal. Shape regularity of Tn additionally implies that max{|x−
z|, |z − y|} ≲ |x− y| ≃ 2−n. Together with the above, we have

|Y (x)− Y (y)|
|x− y|α

≤ |Y (x)− Yn(x)|+ |Y (y)− Yn(y)|
|x− y|α

+
|Yn(x)− Yn(y)|

|x− y|α

≲
2−nα

|x− y|α
+

|Yn(x)− Yn(z)|
|x− y|α

+
|Yn(z)− Yn(y)|

|x− y|α
≲ 1 + max

T∈Tn
|Yn|Cα(D) ≲ 1.

Hence, Y (ω) is locally Hölder continuous with exponent α. A standard compactness
argument shows that Y (ω) is Hölder continuous on D. This concludes the proof. □

Remark 61. Note that a more careful argument allows one to show (at least for Gaussian
processes) that Z : ω 7→ |Y (ω)|Cα(D) is a random variable with eZ ∈ Lq(Ω) for all 1 ≤
q <∞. To achieve this, one has to replace the Borel-Cantelli Lemma with a quantitative
version, i.e., one needs to know how fast n(ω) and m(ω) will grow.

Note that we can apply Theorem 59 to our Gaussian processes with known covariance
functions ϱ(x, y). Given x, y ∈ D, note that Z := X(x) − X(y) is a Gaussian random
variable with zero mean and variance ϱ(x, x)−2ϱ(x, y)+ϱ(y, y). Since the higher moments
of Gaussian’s are explicitly known, we obtain

E
(
|X(x)−X(y)|2p

)
= EZ2p =

( p−1∏
i=0

(2p− 2i)
)(
ϱ(x, x)− 2ϱ(x, y) + ϱ(y, y)

)p

.

For example, the Brownian motion satisfies ϱ(s, t) := min{s, t} and hence

E
(
|B(s)−B(t)|2p

)
≃ |s− t|p.

Choosing p ∈ N sufficiently large, we satisfy p ≥ d + α2p for all α < 1/2. Hence,
Theorem 59 shows that B is Hölder continuous for all 0 < α < 1/2. Together with
Theorem 51, we finally proved the existence of Brownian motions. (Note that one can
show that α < 1/2 is indeed the maximal regularity for Brownian motions.)
The exponential covariance ϱ(x, y) := exp(−|x− y|/λ) produces the same Hölder reg-

ularity.

For the Gaussian covariance ϱ(x, y) := exp(−|x−y|2/λ), we have E
(
|X(x)−X(y)|2p

)
≃

|x − y|2p and hence Hölder regularity for all 0 < α < 1. In fact, one can show that the
derivative ∇xX(x, ω) has the covariance function ∇x∇yϱ(x, y) and is again a Gaussian
process. Thus, we may apply Theorem 59 to all derivatives and prove thatX(ω) ∈ C∞(D)
almost surely. The different regularity of samples can also be observed in Figure 6.
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4. High-dimensional approximation: Neural Networks

The number of elements in a regular mesh Th in which each element T ∈ Th satisfies
diam(T ) ≃ |T |1/d ≃ h scales roughly like O(h−d), i.e., exponentially in the dimension.
We remember the a priori convergence of FEM of (quasi-) interpolation operators of the
form

∥u− uh∥H1(Ω) = O(h)

in case u is sufficiently smooth. To compute uh, we need to solve a linear system with
#Th elements. The cost for this is at least O(#Th) = O(h−d). Thus, in terms of cost, we
get the estimate

∥u− uh∥H1(Ω) = O(N−1/d)

with N = #Th.
Just as for tensor quadrature, the convergence rate with respect to cost goes down

in higher dimensions, the curse of dimensionality renders the approach impractical. We
consider a couple of many different approaches to this problem and start with neural
networks. They are extremely versatile and have been shown to posses almost all the
approximation characteristics that classical methods (sparse grids, polynomial interpo-
lation,. . . ) enjoy. On the downside, they are mathematically harder to study and often
lead to non-linear, non-convex interpolation problems.

4.1. Definition of Artificial Neural Networks. Artificial Neural Networks (or just
networks or neural networks in the following) are a class of functions F : Rs → Rs′ which
can be represented by a number of parameters (also often called weights). In that regard,
neural networks are no different to the class of polynomial functions, or the class of
rational functions.

In the following, we define a certain kind of network known as feed forward network
(note that there are many other kinds of artificial neural networks, and we only consider
a simple class here): Given a depth d ∈ N and an architecture s0, . . . , sd ∈ N, we define
the weight matrices

W i ∈ Rsi×si−1 for all i = 1, . . . , d

and the biases

bi ∈ Rsi for all i = 1, . . . , d.

For a given activation function ϕ : R → R, which is applied entrywise to vectors, we define
the network F : Rs0 → Rsd by F (x) := Fd(x) with F0(x) := x and

Fi+1(x) = ϕ(W i+1Fi(x) + bi+1) for all i = 0, . . . , d− 2

and Fd(x) := W dFd−1(x) + bd. The activation function is typically a non-linear function
(if ϕ is linear, then F is just an affine function). Popular activation functions are

• ReLU: ϕ(x) = max{x, 0}
• leaky-ReLU: ϕ(x) = max{x, δx} for some 0 < δ ≪ 1.
• sigmoid: ϕ(x) = 1/(1 + ex)
• swish: ϕ(x) = x/(1 + e−x)
• softplus: ϕ(x) = log(1 + ex)

Remark 62. Note that in practical applications, all sorts of (and combinations of) ac-
tivation functions have proven themselves useful. In the mathematical analysis of neural
networks, the choice of ϕ often doesn’t make a real difference and one sticks with simple
choices such as ReLU.
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We will work only with the ReLU-activation function ϕ(x) = max{x, 0}. We define
the dimensions of a network F by

depth(F ) := d and width(F ) := max
0≤i≤d

si

as well as dim(F ) := max{depth(F ),width(F )}. Note that the term depth is sometimes
referred to as the number of layers of a network. A network F with depth(F ) > 2 is
usually called a deep neural network, while depth(F ) ≤ 2 is called a shallow network.
Similarly, the notion deep learning refers to the use of deep neural networks as opposed
to shallow networks.

The number of parameters that specify a network F of given architecture s0, . . . , sd is

#F :=
d∑

i=1

sisi−1 + si ≤ d (dim(F )2 + dim(F )).

Note that, contrary to polynomial spaces, the space of networks F of a given architecture
is not linear and also the dependence of F on the weights W 1, . . . ,W d is non-linear. To
clarify this dependence, it is often useful to write

F (x) = F (W , b, x),

where W := (W 1, . . . ,W d) ∈ R
∑d

i=1 sisi−1 and b := (b1, . . . , bd) ∈ R
∑d

i=1 si are interpreted
sometimes as matrices and sometimes as vectors for convenience.

4.2. Gradient descent. As with interpolation in polynomial spaces, one can try to
approximate given data with neural networks. Given x1, . . . , xN ∈ Rs and y1, . . . , yN ∈
Rs′ as well as an architecture s = s0, s1, . . . , sd = s′, the approximation problem is to find
weights W and biases b such that

L(W , b) :=
N∑
i=1

|F (W , b, xi)− yi|2 → min . (15)

The function L(W , b) is called the loss function (note that there are many other useful
definitions of loss, but we will only consider the least-square loss).

Due to the non-linearity of (W , b) 7→ F (W , b, ·), we have to use a non-linear opti-
mization method. One of these methods is Gradient descent.

Algorithm 4. Input: function f : Rd → R, starting value w0 ∈ Rd and step-size α > 0.
For ℓ = 0, 1, 2, . . . do:

(1) Compute gradient Gℓ := ∇wf(wℓ) ∈ Rd.
(2) Update wℓ+1 = wℓ − αGℓ.

Output: sequence of approximations wℓ of the minimizer of f .

Remark 63. Obviously, the gradient descent algorithm (Algorithm 4) can be applied to
minimize L(W , b) by embedding (W , b) ∈ R#F and setting wℓ = (W ℓ, bℓ).

Remark 64. Note that for non-linear, non-convex optimization, convergence of (W ℓ, bℓ)
to the true minimizer is all but certain. This is the reason, why most results about
approximation by neural networks fall into one of the following two categories: (1) Results
that show that a neural network with certain approximation properties exists and (2)
results that show that a certain optimization algorithm will find a network with certain
approximation properties. Naturally, category 2 is much harder to prove than category 1.
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Remark 65. Note that practical implementations of machine learning often use Stochas-
tic Gradient Descent instead of plain gradient descent. The only difference to Algorithm 4
is that instead of computing Gℓ = ∇(W ,b)L(W , b), one randomly selects m ≪ n (the so-
called batch size) indices 1 ≤ i1, . . . , im ≤ N and computes

Gstoch
ℓ :=

n

m
∇(W ℓ,bℓ)

m∑
j=1

|F (W ℓ, bℓ, xij)− yij |2 ≈ ∇(W ℓ,bℓ)L(W ℓ, bℓ)

in Step (1) of Algorithm 4. Often, one uses m = 32. The algorithm has several practical
advantages such as:

• more optimization steps for the same cost,
• often more efficient as the batch size can be optimized such that Gstoch

ℓ can be
computed in the fast memory close to the processor,

• stochastic nature of Gstoch
ℓ can prevent getting stuck at local minima.

The mathematical analysis of stochastic gradient descent is very similar to plain gradient
descent, since one can rely on the fact

EGstoch
ℓ = ∇(W ℓ,bℓ)L(W ℓ, bℓ) = Gℓ.

We give one example of a function class which guarantees convergence of gradient
descent.

Lemma 66. Let Q, q > 0 and let f : Rd → R denote a non-negative function such that
qf(w) ≤ |∇f(w)|2 ≤ Qf(w) for all w ∈ Rd. Moreover, let

|∇f(w)−∇f(v)| ≤ Q|w − v||w|+ q

2Q1/2
f(w)1/2 for all w, v ∈ Rd.

Then, there exists a step-size α > 0 and some 0 < κ < 1 such that Algorithm 4 produces
a sequence (wℓ)ℓ∈N with

f(wℓ) ≤ κf(wℓ−1) ≤ κℓf(w0) for all ℓ ∈ N.

Proof. There holds

f(wℓ+1)− f(wℓ) = −α
∫ 1

0

∇f(wℓ + s(wℓ+1 − wℓ))Gℓ ds

= −α∇f(wℓ) ·Gℓ − α

∫ 1

0

(
∇f(wℓ + s(wℓ+1 − wℓ))−∇f(wℓ)

)
Gℓ ds.

Under the assumptions on f , we obtain

|∇f(wℓ + s(wℓ+1 − wℓ))−∇f(wℓ)| ≤ Qα|Gℓ||wℓ|+ q/2f(wℓ)
1/2 ≤ (Q3/2α|wℓ|+ q/(2Q1/2))f(wℓ)

1/2.

This concludes

f(wℓ+1)− f(wℓ) ≤ −αqf(wℓ) + (Q2α|wℓ|+ q/2)αf(wℓ). (16)

We prove by induction that |wℓ| ≤ C and f(wℓ) ≤ κf(wℓ−1) for all ℓ ∈ N with

C := |w0|+ 8Q1/2/qf(w0)
1/2 and κ := 1− q2/(16Q2C).

For ℓ = 0, there is nothing to prove. Assume the induction assumption holds for all
0 ≤ ℓ ≤ L and choose α > 0 such that the reduction factor in (16)

1− αq/2 +Q2Cα2 < 1

49



is minimal. Elementary optimization reveals that α := (q/4)/(Q2C) is the optimal choice
and the minimum is κ = 1− q2/(16Q2C). Then, (16) implies

f(wℓ+1) ≤ κf(wℓ) for all 0 ≤ ℓ ≤ L

and hence also

|wℓ+1 − wℓ| = α|Gℓ| ≤ Q1/2αf(wℓ)
1/2 ≤ Q1/2ακℓ/2f(w0)

for all 0 ≤ ℓ ≤ L. This shows |wℓ+1| ≤ |w0| + Q1/2αf(w0)
1/2

∑∞
j=0 κ

ℓ/2 = |w0| +
Q1/2αf(w0)/(1−

√
κ). With

√
1− x ≤ 1− x/2, we obtain

√
κ ≤ 1− q2

32Q2C

and hence

Q1/2αf(w0)
1/2/(1−

√
κ) ≤ Q1/2f(w0)

1/2α
32Q2C

q2
= C − |w0|.

Hence, we obtain |wℓ| ≤ C for all 0 ≤ ℓ ≤ L+ 1. This concludes the induction and thus
the proof. □

Remark 67. Note that, e.g., strongly convex functions with linearly bounded second
derivative satisfy the assumptions of the above lemma.

4.2.1. Numerical example. As a practical example, we try to approximate the function
x 7→ x2 on [0, 1] by neural networks of different depth. We consider the networks F i : R →
R with depth equal to i and s0 = si = 1 and sj = 5 for all 1 ≤ j ≤ i − 1. We use the
ReLU activation function ϕ(x) = max{x, 0}. The loss function is defined as

L(W , b) :=
103∑
i=0

(F (W , b, xi)− x2i )
2

for xi := i10−3. To solve the optimization problem (15), we use the Python library
TensorFlow 2.0. In Figures 7–8 you can see the numerical results. Instead of plain
gradient descent (Algorithm 4), the code uses a more sophisticated optimizer called Adam,
which averages the gradient over a number of steps to obtain smoother updates. We
include the Python code for running the experiment with F 2:

1 import numpy as np
2 import t en so r f l ow as t f
3 # de f i n e data
4 n=1e3 ;
5 xdata = np . arange (0 ,1 ,1/n)
6 ydata = xdata ∗∗2
7 # de f i n e neura l network
8 model = t f . keras . models . Sequent i a l ( [ t f . ke ras . l a y e r s . Input ( shape=(1 ,) ) ,
9 t f . ke ras . l a y e r s . Dense (5 , a c t i v a t i o n=’ r e l u ’ ) ,

10 t f . ke ras . l a y e r s . Dense (5 , a c t i v a t i o n=’ r e l u ’ ) ,
11 t f . ke ras . l a y e r s . Dense (1 ) ] )
12 # de f i n e l o s s func t i on
13 de f l o s s ( y actua l , y pred ) :
14 re turn t f . reduce sum ( t f . square ( y actua l−y pred ) )
15 # se t up grad i en t descent and t r a i n the network
16 model . compi le ( opt imize r=’adam ’ , l o s s=l o s s )
17 model . f i t ( xdata , ydata , epochs=1000)
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Figure 7. We plot three runs of gradient descent with the goal to find
optimal weights for F 5(W , b, x) ≈ x2. Since the starting guess (W 0, b0)
is random, the performance of gradient descent varies dramatically and
sometimes the algorithm even fails to converge. The x-axis shows the
number of iterations of gradient descent and the y-axis shows the value of
L(W ℓ, bℓ).
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Figure 8. We plot (from left to right) the best approximations F 1, F 3, F 5

to x 7→ x2 which gradient descent finds after 103 optimization steps. We
can clearly see, that a deep network F 5 achieves a better approximation
than a shallow network F 1.

4.3. Elementary approximation properties. Note that many elementary function
can be represented by a neural network directly. For example, for ϕ(x) := max{x, 0} the
following functions are neural networks:

• Identity: The identity id : Rs → Rs can be represented by two or three-layer
networks with width bounded by 2s, e.g.,

id(x) =
(
I −I

)
ϕ
((

I
−I

)
x
)
=

(
I −I

)
ϕ
((

I 0
0 I

)
ϕ
((

I
−I

)
x
))
,

where I,0 ∈ Rs×s denotes the identity matrix and the zero matrix.
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• Maximum: For x, y ∈ R, there holds

max{x, y} = max{x− y, 0}+ y =
(
1 1 −1

)
ϕ
(1 −1

0 1
0 −1

(
x
y

))
.

• Minimum: For x, y ∈ R, there holds

min{x, y} = −max{−x,−y} =
(
−1 −1 1

)
ϕ
(−1 1

0 −1
0 1

(
x
y

))
.

• Absolute value: For x ∈ R, there holds

|x| = max{x, 0}+max{−x, 0} =
(
1 1

)
ϕ
((

1
−1

)
x
)
. (17)

Given e1, . . . , es, f1, . . . , fs ∈ R, a one-layer network

F (x) = (e1, . . . , es)ϕ((f1, . . . , fs)
Tx+ (b1, . . . , bs)

T ) : R → R

with ϕ(x) := max{x, 0} is a piecewise linear function. The kinks of this piecewise linear
function are located at

xi := −bi/fi for i = 1, . . . s.

Hence, we have for x /∈ {x1, . . . , xs} that

F ′(x) =
s∑

i=1
fix+bi≥0

eifi.

This shows that by carefully choosing the weights ei, fi and bi, we can exactly represent
any piecewise linear function on a given interval [a, b] ⊂ R. Since piecewise linear func-
tions are dense in continuous functions, this implies that we can uniformly approximate
any continuous function f : [a, b] → R by a sufficiently wide one-layer neural network. A
similar theorem in multiple dimensions was already proven in the 90s.

Theorem 68 (Universal approximation theorem [7]). Let f : K → Rd′ be continuous on
the compact set K ⊂ Rd and ε > 0. If ϕ : R → R is continuous and not a polynomial,
there exists s ∈ N and W 1,W 2, b1, b2 ∈ Rs such that

sup
x∈K

|f(x)− (W T
2 ϕ(W 1x+ b1) + b2)| ≤ ε.

Remark 69. Note that the condition of ϕ not being a polynomial is necessary. Otherwise,
F (·) is also just a polynomial of the same degree on Rd and therefore can’t approximate
continuous functions.

Remark 70. The usefulness for numerical algorithms of the theorem above is limited, as
it does not quantify the number of parameters necessary to obtain a certain accuracy. It
turns out that deep networks can be more efficient by orders of magnitude (see Theorem 72
below). This reminds us of the situation of first-order approximation vs. higher-order
approximation. For example, linear approximation (Interpolation, Scott-Zhang) converges
with rate O(h2) in L2. Higher-order Cebyshev interpolation, however, can converge with
exponential rate e−p if sufficient smoothness is available.
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Lemma 71. Given two networks F : Rs → Rr and G : Rr → Rt, the composition
G ◦ F is a network with depth(G ◦ F ) = depth(F ) + depth(G) and width(G ◦ F ) =
max{width(G),width(F )}. Given networks F1, . . . Fn : Rs → Rr and α1, . . . , αn ∈ R,
there exists a network F with width(F ) ≤ max{

∑n
i=1width(Fi), 2s, r} and depth(F ) ≤

max1≤i≤n{depth(Fi)}+2 such that F (x1, . . . , xn) = (F (x1), . . . , F (xn)) for all (x1, . . . , xn) ∈
Rns. Moreover, there exists a network G of the same dimensions of F such that G(x) =∑n

i=1 αiFi(x) for all x ∈ Rs.

Proof. For the proof, we assume vanishing biases, i.e. b = 0, for all the involved networks
in order to simplify the notation.

Part 1) Composition: Assume that the architecture of F is s = s0, . . . , sd = r with
weight matrices W F

i and that of G is r = s′0, . . . , s
′
d′ = t with matrices WG

i . Then, we
define G ◦ F with the architecture

s0, . . . , sd, s
′
0, . . . , s

′
d′

and weight matrices W i := W F
i for all i = 1, . . . , d and W i := WG

i−d for all i =
d+ 1, . . . d+ d′. The dimensions of G ◦ F can be derived directly from this construction.

Part 2) Weighted sum and vectorization: To sum two networks of different depth, we
first have to bring them to equal length, using the identity blocks id. Given networks

F1, . . . Fn : Rs → Rr with depths d1, . . . , dn ∈ N, we can use id to obtain networks F̃i with
depths d := 2 + max1≤i≤n di by writing d − di = 2k + 3r with k ∈ N and r ∈ {0, 1} and
composing

F̃i := Fi ◦ id(k)
2 ◦ id(r)

3 ,

where idi, i ∈ {2, 3} denotes the two-layer and three-layer version of the identity network.

Note that width(F̃i) ≤ max{width(Fi), 2s}. Given the weight-matrices W̃ i,j ∈ Rsi,j×si,j−1 ,

j = 1, . . . , d of the networks F̃i, we construct W j ∈ R
∑n

i=1 si,j×
∑n

i=1 si,j−1 as a block-
diagonal matrix, i.e.,

W j := diag(W 1,j, . . . ,W n,j)

for j = 1, . . . , d Finally, we define

V s :=
(
I . . . I

)
∈ Rs×sn,

Rr :=
(
α1I . . . αnI

)
∈ Rr×rn,

The construction above shows that the networks F := W dϕ(. . . ϕ(W 1(x1, . . . , xn)
T ) . . .)

as well as G := RrW dϕ(. . . ϕ(W 1V
T
s x) . . .) satisfy the statement. This concludes the

proof. □

A fundamental property of deep neural networks, as opposed to shallow networks, is
the fact that they can efficiently approximate the x 7→ x2 function. Despite the simple
proof, this was discovered only quite recently in [11].

Theorem 72. There exists a neural network F with depth(F ) = 2k and width(F ) =
3k + 2 such that

|F (x)− x2| ≤ 4−k for all 0 ≤ x ≤ 1.

The magnitude of the weights of F is bounded by four.

Proof. Part 1: Define the saw-tooth function (see Figure 9)

g(x) :=

{
2x x < 1/2,

2− 2x 1/2 ≤ x.
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It is easy to see that

g(x) = min{2x, 2− 2x} = −max{2− 4x, 0}+ 2− 2x

and hence g can be represented exactly by the two layer network

g(x) =
(
1 −1 −1

)
ϕ
( 2

−2
−4

x+

0
0
2

)
+ 2.

Let g(j) := g ◦ . . . ◦ g denote the j-times composition of g with itself. Define the function

Gk(x) :=
k∑

j=1

4−jg(j)(x).

We claim that Gk is the piecewise linear interpolation of f(x) := x− x2 on [0, 1] on the
points x = i2−k for all i = 0, . . . , 2k, i.e.,

Gk(x) = x− x2 for all x = i2−k, i = 0, . . . , 2k. (18)

See Figure 9 for some illustration.

Part 2: To show (18), we first prove that

g(k)(i2−k) = 1 for all i = 1, 3, 5, . . . , 2k − 1,

g(k)(i2−k) = 0 for all i = 0, 2, 4, . . . , 2k,
(19)

and that g(k)|[i2−k,(i+1)2−k] is an affine function for all i = 0, . . . , 2k − 1. To that end, write

x ∈ [0, 1) as x =
∑k

r=1 ar2
−r with ar ∈ {0, 1} for r = 1, . . . , k − 1 and 0 ≤ ak < 2. Note

that ak ∈ {0, 1} implies x = i2−k with even resp. odd i. Moreover, ak ∈ (0, 1) represents
all x ∈ (i2−k, (i+ 1)2−k) and ak ∈ (1, 2) represents all x ∈ ((i+ 1)2−k, (i+ 2)2−k) .
By definition of g, there holds

g(x) =

{∑k
r=1 ar2

−r+1 a1 = 0,

2−
∑k

r=1 ar2
−r+1 a1 = 1

=

{∑k−1
r=1 ar+12

−r a1 = 0,

1−
∑k−1

r=1 ar+12
−r a1 = 1

and hence, with g(x) = g(1− x), we have

g(g(x)) = g
( k−1∑

r=1

ar+12
−r
)
. (20)

This immediately proves (19) for all 0 ≤ i < 2k, since from (20), we obtain g(k)(x) =
g(ak2

−1) and hence

g(k)(x) = g(ak2
−1) =


g(1/2) = 1 ak = 1,

g(0) = 0 ak = 0,

g|(0,1/2)∪(1/2,1) = piecewise affine function ak ∈ (0, 1) ∪ (1, 2).

For i = 2k, we have x = 1 and a direct calculation shows g(k)(1) = 0. This concludes (19).

Part 3: With the results from Part 2 at hand, we prove (18) by induction on k.
First, note that (19) implies that Gk is a piecewise affine function on (i2−k, (i + 1)2−k)
for i = 0, . . . , 2k − 1. For k = 1, there holds G1(0) = 0, G1(1) = 0, and G1(1/2) = 1/4
which interpolates f(x) := x−x2. Moreover, Gk is linear on [0, 1/2] and [1/2, 1]. Assume

54



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g(x)

g(g(x))/4

g(g(g(x)))/16

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9. Scaled compositions of the sawtooth function g(x) defined in
the proof of Theorem 72 (left) and nodal interpolation of x2 (right).

the Gk interpolates f(x) in the respective points given in (18). Then, we know that
(f −Gk)|[i2−k,(i+1)2−k] is a parabola which is zero at its endpoints. Thus, the height of the

parabola at the interval midpoint m := i2−k+2−k−1 is uniquely determined by its second
derivative (which is −2) and the distance of the endpoints (which is 2−k). Elementary
calculations show that (f−Gk)(m) = 2−2k/4 = 4−k−1. In (19), we proved that Gk+1 is an
affine function on (i2−k,m) and (m, (i+1)2−k). Hence, in order to show Gk+1(m) = f(m),
it remains to confirm that g(k+1)(m) = 1 and g(k+1)(i2−k) = g(k+1)((i+ 1)2−k) = 0. This
follows from (19), since m = (2i + 1)2−k−1. This concludes the induction and hence the
proof of (18).

Part 4: The approximation error for the 1D linear interpolant on mesh-size 2−k can
be bounded by use of the fundamental theorem of calculus, i.e.,

∥f −Gk∥L∞([0,1]) ≤
1

2
2−2k∥f ′′∥L∞([0,1]) = 4−k.

Lemma 71 shows that Gk can be represented by a neural network with depth 2k+2 and
width 3k. Examining the proof of Lemma 71, we see that, since the g(k) have an even
number of layers, we can actually construct Gk with depth 2k instead of 2k+2. Another
application of Lemma 71 shows that x − Gk(x) is a neural network with depth 2k and
width 3k + 2. This concludes the proof. □

Corollary 73. Given k,M ∈ N, there exists a network G with depth 2k + 5 and width
9k + 6 such that

|xy −G(x, y)| ≤ 6M24−k for all −M ≤ x, y ≤M.

Proof. First, we note that xy = 4M2(x/(2M))(y/(2M)). Hence, we may restrict ourselves
to numbers x, y ∈ [−1/2, 1/2]. We already know how to square numbers in [0, 1] using
the network F from Theorem 72 together with the absolute value from (17), there holds

F̃ (x) := (F ◦ | · |)(x) = F (|x|) for all x ∈ [−1, 1].
Therefore, we compute for all x, y ∈ [−1/2, 1/2]

2xy = ((x+ y)2 − x2 − y2)

≈ G̃(x, y) :=
(
F̃ (x+ y)− F̃ (x)− F̃ (y)

)
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Lemma 71 shows that x+y is a network with depth 2 and width 4 (it is easy to construct

x + y with width two directly). Hence, with Theorem 72, F̃ (x + y) is a network with

depth 2k+3 and width 3k+2, while F̃ is a network with depth 2k+1 and width 3k+2.

Thus, Lemma 71 implies that the right-hand side G̃(x, y) is a neural network with depth

2k + 5 and width 9k + 6. Finally, let W̃ 0, . . . , W̃ 2k+5 denote the weight matrices of

G̃. The division by M and the multiplication by 2M2 can be achieved by setting the

weight matrices of G to W 1 = W̃ 1/(2M), W 2k+5 = 2M2W̃ 2k+5 and W i = W̃ i for all
i = 2, . . . , 2k + 4.

The approximation error satisfies for x, y ∈ [−1/2, 1/2], by use of the triangle inequality
and Theorem 72,

|2xy − G̃(x, y)| ≤ |(x+ y)2 − F (|x+ y|)|+ |x2 − F (|x|)|+ |y2 − F (|y|)| ≤ 3 · 4−k.

This shows for x, y ∈ [−M,M ] that

|xy −G(x, y)| ≤ 6M24−k

and concludes the proof. □

Corollary 74. Given a monomial
∏d

i=1 x
qi
i , there exists a network F : Rd → R with

depth(F ) ≃ (d+ q)k and width(F ) ≃ dk such that

|
d∏

i=1

xqii − F (x1, . . . , xd)| ≤ C4−k(2M)2d−q

for all x1, . . . , xd with |xi| ≤ M1/(dq) and q := max1≤i≤d qi. The hidden constants depend
only on M .

Proof. For simplicity, we assume M ≥ 3/2.
Step 1: We use the multiplication network G from Corollary 73 with 2M instead of

M and k ∈ N sufficiently large such that 6 · 4−k(2M)(2d+1)q ≤ M . The approximation is
constructed via

xq ≈ Rq(x) := G(x,G(x, . . . G︸ ︷︷ ︸
q−1-times

(x, x) . . .)).

We show that the approximation error satisfies

|xq −Rq(x)| ≤ 6 · 4−k(2M)q (21)

by induction on q. For q = 2, Corollary 73 implies |x2 − G(x, x)| ≤ 6(2M)24−k and
hence confirms (21). Assume that (21) holds for some q ∈ N. Then, since |Rq(x)| ≤
|xq|+ 6 · 4−k(2M)q ≤ 2M , Corollary 73 shows

|xq+1 −Rq+1(x)| ≤ |xq+1 − xRq(x)|+ |xRq(x)−G(x,Rq(x))|
≤M1/q6 · 4−k(2M)q + 6(2M)24−k ≤ 6 · 4−k(2M)q+1,

since 2M ≥M1/q + 1 for M ≥ 1. This concludes (21).

Step 2: We may construct Rq(x) with the following helper network

Q(x, y) := (x,G(x, y)) ∈ R2

with depth(Q) ≃ width(Q) ≃ k. Then, with e2 := (0, 1), there holds R2 = e2 · Q(x, x)
and

Rq(x) = e2 ·Q ◦ . . . ◦Q︸ ︷︷ ︸
q−1−times

(x, x).
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Lemma 71 shows depth(Rq) ≃ (q − 1)k and width(Rq) ≃ k.
Step 3: We construct the network Fj,...,d for 1 ≤ j ≤ d by

Fj,...,d(xj, . . . , xd)

{
G(Rqj(xj), G(Rqj+1

(xj+1), . . . G(Rqd−1
(xd−1), Rqd(xd)) . . .)) for j < d

Rqd(xd) for j = d.

We prove by induction that |Fj,...,d(xj, . . . , xd)| ≤ 2M for all 1 ≤ j ≤ d as well as

errj := |
d∏

i=j

xqii − Fj,...,d(xj, . . . , xd)| ≤ 6 · 4−k(2M)q+2(d−j)q. (22)

For j = d, Fd(xd) = Rqd(xd) and (21) shows |xqdd − Fd(xd)| ≤ 6(2M)qd4−k. This implies
|Fd(xd)| ≤ |xd|qd + 6(2M)qd4−k ≤ 2M .

Assume that (22) holds for some 1 < j+1 ≤ d. The error estimates from Corollary 73
and (21) show

errj ≤ |
d∏

i=j

xqii − x
qj
j Fj+1,...,d(xj+1, . . . , xd)|

+ |xqjj −Rqj(xj)||Fj+1,...,d(xj+1, . . . , xd)|
+ |Rqj(xj)Fj+1,...,d(xj+1, . . . , xd)−G(Rqj(xj), Fj+1,...,d(xj+1, . . . , xd))|

≤ 2Merrj+1 + 2M6 · 4−k(2M)qj + 6(2M)24−k

≤ 6 · 4−k(2M)q+(d−j)q
(
(2M)−2q + (2M)qj+1−q−2(d−j)q + (2M)2−q−2(d−j)q

)
︸ ︷︷ ︸

≤1

since q ≥ 1 and 2M ≥ 3. Moreover, there holds

|Fj,...,d(xj, . . . , xd)| ≤
d∏

i=j

|xi|qi + 6 · 4−k(2M)(2d+1)q ≤ 2M.

This concludes the induction and proves (22).
Step 4: We may construct F := F1,...,d with the helper network

Qj(x1, . . . , xd) := (x1, . . . , xj−1, G(xj, xj+1), xj+1, . . . , xd) 1 ≤ j < d

with depth(Qj) ≃ k and width(Qj) ≃ k + d according to Lemma 71. There holds

F (x1, . . . , xd) = e1Q1 ◦ . . . ◦Qd−2 ◦Qd−1(Rq1(x1), Rq2(x2), . . . , Rqd(xd))

with e1 := (1, 0, . . . , 0) ∈ Rd. From this, we obtain immediately that depth(F ) ≃ (d+q)k
and width(F ) ≃ dk. This concludes the proof. □

4.4. Approximation of holomorphic functions. This section is based on [8]. High di-
mensional functions with sufficient smoothness can be approximated efficiently by neural
networks.

Lemma 75. Let F : Cs → C denote a function that is holomorphic in each component
and uniformly bounded on the domain Ω′ :=

∏s
i=1Bri(0) ⊂ Cs with ri > 0. For any

multi-index α ∈ Ns
0 and the corresponding differentiation operator ∂α :=

∏s
i=1 ∂

αi
ωi
, there

holds

|∂αF (0)| ≤ ∥F∥L∞(Ω′)

s∏
i=1

αi!r
−αi
i .
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Proof. Just as in the proof of Lemma 29, F satisfies the multidimensional analog of
Cauchy’s integral formula for all ω ∈ Ω′: Choose n-distinct coordinates u := {d1, . . . , dn} ⊆
{1, . . . , s}, and for z ∈ Rs define (z; u) ∈ Rs via

(z; u)i =

{
ωi i /∈ {d1, . . . , dn}
zi else.

Then, there holds for all ω̃ sufficiently close to ω that

F (ω̃) = (2πi)−n

∫
∂Bε1 (ωd1

)

· · ·
∫
∂Bεn (ωdn )

F (z; u)

(z1 − ω̃d1) . . . (zn − ω̃dn)
dz1 . . . dzn,

where the parameters εi > 0, i = 1, . . . , n are chosen sufficiently small such that the
integration domains of the contour integrals above are contained in Ω′. Choosing εj = rj
and ω = 0, we ensure that the contour integrals are contained in Ω′. Differentiation with
respect to ω̃

∂αω̃di

1

(z − ω̃di)
=

α!

(z − ω̃di)
1+α

and setting ω̃ = 0 concludes

|∂αF (0)| ≤ ∥F∥L∞(Ω′)

s∏
i=1

αi!r
−αi
i .

□

Lemma 76. Let (ϱi)i∈N denote a positive sequence and let F : Cs → C denote a function
that is holomorphic in each component and uniformly bounded on the domain Ω′ :=∏s

i=1B1/2+ϱi(0) ⊂ Cs. Let 0 < p < 1 such that
∑∞

i=1 ϱ
−p
i < ∞. Then, there exists a

network Fn with ∥F − Fn∥L∞([−1/2,1/2]s) ≤ Cn1−1/p such that depth(Fn) ≃ s log(n) and
width(Fn) ≃ n log(n) + sn

Proof. For brevity of notation, we define ri := 1/2 + ϱi and ρi := 1 + 2ϱi = 2ri. Since
each holomorphic function has a convergent Taylor series, we obtain for ω ∈ Ω′

F (ω) =
∑
α∈Ns

0

ωα

α!
∂αF (0),

where ωα :=
∏s

i=1 ω
αi
i and α! :=

∏s
i=1 αi!. We order the α1,α2, . . . ∈ Ns

0 such that

ρ−αk :=
s∏

i=1

ρ
−αk,i

i ≥ ρ−αk+1 :=
s∏

i=1

ρ
−αk+1,i

i

for all k ∈ N. By definition, if αi ≤ αk, we also have ρ−αi ≥ ρ−αk . Note that

∞∑
k=1

(ρ−αk)p =
∑
α∈Ns

0

ρ−pα =
s∏

i=1

∞∑
α=0

ρ−pα
i =

s∏
i=1

1

1− ρ−p
i

.

Taking the logarithm of the last term above, we see

log
( s∏

i=1

1

1− ρ−p
i

)
= −

s∑
i=1

log(1− ρ−p
i ) ≲

s∑
i=1

ρ−p
i <∞
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independently of s, where we used that there exists δ > 0 with ρi ≥ 1 + δ > 0 for all
i ∈ N in the second to last estimate. This shows that (ρ−αk)k∈N ∈ ℓp. Just as in (9), we
use this fact together with the fact that the sequence is decreasing to obtain

∞∑
k=n+1

ρ−αk ≲ n1−1/p.

With this in mind, we define the approximation

Fn(ω) :=
n∑

k=1

ωαk

αk!
∂αkF (0).

Recall that ρα = 2|α|rα. Lemma 75 shows for ω ∈ [−1/2, 1/2]s that

|F (ω)− Fn(ω)| ≤
∞∑

k=n+1

ωαk

αk!
|∂αkF (0)| ≤ ∥F∥L∞(Ω′)

∞∑
k=n+1

|ωαk |
αk!

( s∏
i=1

αk,i!
)
r−αk

≤ ∥F∥L∞(Ω′)

∞∑
k=n+1

|ωαk |2|αk|

αk!

( s∏
i=1

αk,i!
)
ρ−αk

≤ ∥F∥L∞(Ω′)

∞∑
k=n+1

ρ−αk ≲ n1−1/p∥F∥L∞(Ω′).

It remains to show that Fn can be approximated by a neural network. To the end, we
use Corollary 74 to find a network Gk with

∥Gk − ωαk∥L∞([−1,1]s) ≤ n−1/p

such that depth(Gk) ≃ (s + q)| log(n)| and width(Gk) ≃ log(n)s, where q = maxαk.
Note that maxαk ≤ k.

Lemma 71 shows that

F̃n :=
n∑

k=1

Gk(ω)

|αk|!
∂αkF (0).

is a network with depth(F̃n) ≃ (s+n) log(n) and width(F̃n) ≃ n log(n)+ sn. Finally, the

error between Fn and F̃n satisfies

|Fn − F̃n|(ω) ≤ nn−1/p.

This concludes the proof □

Remark 77. Note that we can immediately apply the previous lemma to our random
Poisson problem from Section 2. We proved in Lemma 27 and Lemma 30 that F : ω 7→
G(u(ω)) is a holomorphic function that satisfies the assumptions of Lemma 76. This
implies, that we can approximate G(u(ω)) by a neural network without curse of dimen-
sionality. Note that this problem is much harder, than just to compute E(G(u)), as we
approximate the whole distribution of G(u), which encodes far more information than just
its mean.

Remark 78. The method of proof in Lemma 76 uses the truncated Taylor expansion
of the holomorphic function F to obtain a polynomial approximation. In the context of
random processes F which are parametrized in ω, this is called the Polynomial Chaos
(PC) approximation.
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4.5. Approximation of solutions of PDEs. This section is based on [6]. We already
saw that neural networks are good at approximating smooth high-dimensional functions.
However, even certain non-smooth functions can be approximated efficiently, as shown in
the following. We consider the equation

−1

2
∆u(x) + b(x) · ∇u(x) + c(x)u(x) = f(x) for x ∈ Rd (23)

where we assume that c and b are continuous. Lets recall the Feynman-Kac formula

Theorem 79. Let u ∈ C2(Rd) denote a solution of (23) with c(x) ≥ c0 > 0 and let
X(t) ∈ Rd denote a solution of the (d-dimensional) SDE

dX(t) = −b(X(t))dt+ dB(t), t ≥ 0

with X(0) = x ∈ Rd almost surely. Then, there holds

u(x) = E
(∫ ∞

0

exp
(
−
∫ t

0

c(X(s)) ds
)
f(X(t)) dt

)
.

As classical numerical tool to solve SDEs, we have the Euler-Maruyama method for
equations of the form

dX = F (X(t), t) dt+G(X(t), t) dB(t), X(0) = X0.

Assume a sequence of time-steps 0 = t0 < t1 < . . . < tn = T and define the approximation
via

Xi+1 = Xi + F (Xi, ti)δti +G(Xi, ti)δBi (24)

with Xi ≈ X(ti), δti = ti+1 − ti, and δBi := B(ti+1)−B(ti) ∼ N(0, δti).
We have the following classical strong convergence result.

Lemma 80. Let F and G be Lipschitz continuous in both arguments and let sup0≤t≤T E|X(t)|2 <
∞. Then, the Euler-Maruyama scheme converges with strong order 1/2, i.e.,√

E|X(ti)−Xi|2 ≤ CeCT
(

max
j=1,...,n

δtj
)1/2

for i = 1, . . . , n and C > 0 which depends only on F , G, and T .

Lemma 81. Assume that the coefficient functions x 7→ F (x, ti) and x 7→ G(x, ti)
from (24) can be represented exactly by neural networks Fi and Gi on a sequence of
time-steps t0 < t1 < . . . < tn such that

max{dim(Gi), dim(Fi)} ≤ m ∈ N for all i = 0, . . . , n.

Then, for almost all ω ∈ Ω, the Euler-Maruyama approximation X0 7→ (Xi(ω))i=0,...,n

can be represented by a sequence of neural networks X0 7→ Ri,ω(X0) with

depth(Ri,ω) ≤ (max{2,m}+ 2)i+ 2 and width(Ri,ω) ≤ 2m+ 2d.

Proof. Fix ω ∈ Ω. The construction is inductive. The map X0 7→ X0 can be represented
by the identity network R0 := id with two layers and width equal to 2d. Assume that
Xi(ω) = Ri,ω(X0). Then, we have with (24)

Xi+1(ω) = Ri,ω(X0) + Fi(Ri,ω(X0))δti +Gi(Ri,ω(X0))δBi(ω)

= (idRd→Rd + Fiδti +GiδBi(ω)) ◦Ri,ω(X0).

We have with Lemma 71 that (note that δBi(ω) ∈ R is just a number)

width(idRd→Rd + Fiδti +GiδBi(ω)) ≤ 2m+ 2d and

depth(idRd→Rd + Fiδti +GiδBi(ω)) ≤ max{m, 2}+ 2.
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Hence, Ri+1 exists and

depth(Ri+1) ≤ max{m, 2}+ 2 + depth(Ri). and width(Ri+1) ≤ max{2m+ 2d,width(Ri)}.

This concludes the proof. □

Since we can’t possibly emulate functions on the whole space Rd with a neural network,
we have to cut off the solution u at some point. The following result shows us how to do
that. In the proof, we use a simple tail bound for the standard normal distribution, i.e.,
for Z ∼ N (0, 1) and x > 0, there holds

P(Z ≥ x) =
1√
2π

∫ ∞

x

e−s2/2 ds ≤ 1√
2π

∫ ∞

x

s

x
e−s2/2 ds =

e−x2/2

√
2πx

. (25)

Lemma 82. Let u denote the solution of (23) with constant c(x) := c0 > 0 and b ∈
L∞(Rd)d, f ∈ L∞(Rd) such that f is supported on a ball Bn(0) ⊂ Rd with radius n ∈ N.
Then, there holds

|u(x)| ≤ Ce−α
√

|x|−n for all |x| > n+ 1

and constants C, α > 0 which depend only on c0 and ∥f∥L∞(Rd), ∥b∥L∞(Rd).

Proof. In the present case, the Feynman-Kac formula simplifies to

u(x) =

∫ ∞

0

e−tc0E(f(X(t))) dt =

∫ T

0

e−tc0E(f(X(t))) dt+

∫ ∞

T

e−tc0E(f(X(t))) dt

for all T > 0. The second term can be estimated by∣∣∣ ∫ ∞

T

e−tc0E(f(X(t))) dt
∣∣∣ ≤ c−1

0 e−Tc0 sup
t≥T

|E(f(X(t))| ≤ c−1
0 e−Tc0∥f∥L∞(Rd).

By definition of X, we have

X(t)−X(0) = −
∫ t

0

b(X(t)) dt+B(t).

Let C > 0 be a free parameter. There holds for all 0 ≤ t ≤ T .

P(|X(t)−X(0)| ≥ (C + 1)T∥b∥L∞(Rd)) ≤ P(|B(t)|/
√
t ≥ C

√
T∥b∥L∞(Rd))

=

√
2√
π

∫ ∞

C
√
T∥b∥

L∞(Rd)

exp(−s2/2) ds

≲
1

C
√
T∥b∥L∞(Rd)

exp(−C2T∥b∥2L∞(Rd)/2),

where we used B(t)/
√
t ∼ N (0, 1) and (25). This shows that for |x| = |X(0)| ≥ n+ 1 +

(C + 1)T∥b∥L∞(Rd), we have

E(|f(X(t))|) ≤ 0P(|X(t)−X(0)| < (C + 1)T∥b∥L∞(Rd))

+ ∥f∥L∞(Rd)P(|X(t)−X(0)| ≥ (C + 1)T∥b∥L∞(Rd))

≲
∥f∥L∞(Rd)

C
√
T∥b∥L∞(Rd)

exp(−C2T∥b∥2L∞(Rd)/2).
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Altogether, we obtain

|u(x)| ≤ c−1
0 e−Tc0∥f∥L∞(Rd) + T sup

0≤t≤T
E(|f(X(t))|)

≲ ∥f∥L∞(Rd)

(
c−1
0 e−Tc0 +

√
T

C
exp(−C2T∥b∥2L∞(Rd)/2)

)
.

Choosing T = C and C as large as possible shows C ≃
√

|x| − n and we conclude the
proof. □

Theorem 83. Let u denote the solution of (23) with constant c(x) := c0 > 0, b(x) :=
b0 ∈ Rd and f ∈ W 1,∞(Rd) such that f is supported on a ball around zero with radius
r > 0. Assume that f can be represented exactly by a neural network on Rd. Given ε > 0,
there exists a network U : Rd → R and n ∈ N with

depth(U) ≤ C
(
2 + depth(f) + (2 + d)ε−α

)
width(U) ≤ Cmax{2d, ε−4max{width(f), 2d, 3}}

such that ∥u(x) − U(x)∥L2(Bn(0)) ≤ ε and |u(x)| ≤ ε for all |x| ≥ n. The constants
C, α, n > 0 do not depend on d or ε.

Proof. Lemma 82 shows that |u(x)| ≤ ε for all |x| ≥ n > 0 for sufficiently large n ∈ N
depending only on ∥f∥L∞(Rd), ∥b∥L∞(Rd), r > 0, and c0. Just as in the proof of Lemma 82,
we have

u(x) =

∫ T

0

e−tc0E(f(X(t))) dt+

∫ ∞

T

e−tc0E(f(X(t))) dt

for all T > 0 and ∣∣∣ ∫ ∞

T

e−tc0E(f(X(t))) dt
∣∣∣ ≤ c−1

0 e−Tc0∥f∥L∞(Rd).

We define

uT (x) :=

∫ T

0

e−tc0E(f(X(t))) dt.

There holds

E(f(X(t)) ≤ ∥f∥L∞(Rd)

and hence, this inspires the approximation

uT (x) ≈ U(x) :=
T

MN

N∑
j=1

M∑
i=1

e−tic0f(Ri,ωj
(x)) = TQt

M(Qω
N((t, ω) 7→ e−tc0f(Ri,ω(x)))),

(26)

where we use the Monte Carlo quadrature rules

1

T

∫ T

0

g(t, ω) dt ≈ Qt
M(g)(ω) :=

1

M

M∑
i=1

g(ti, ω),

∫
Ω

g(t, ω) dω ≈ Qω
N(g)(t) :=

1

N

N∑
j=1

g(t, ωj)
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for randomly chosen ti ∈ [0, T ] and ωj ∈ Ω. The Ri,ωj
are constructed with Lemma 81

on a partition t̃k := kτti for some τ > 0. Let Eω denote the expectation on Ω and

Et := 1
T

∫ T

0
dt the expectation on [0, T ]. Then, we may write

uT (x) = TEtEω
(
(t, ω) → e−tc0f(X(t, ω))

)
.

To estimate the error, we observe

|uT (x)− U(x)| ≤ (TEt −Qt
M)Eω

(
(t, ω) 7→ e−tc0f(X(ω, t, x))

)
+
T

M

M∑
i=1

Eω
(
ω 7→ e−tic0

(
f(X(ω, ti, x))− f(Ri,ω(x))

))
+ (Eω −Qω

N)
T

M

M∑
i=1

(
ω 7→ e−tic0f(Ri,ω(x))

)
=: E1 + E2 + E3.

We collect the random variables ξ := (ω1, . . . , ωN , t1, . . . , tM) ∈ Ξ := ΩN × [0, T ]M in one
variable and endow the space Ξ with the corresponding product probability measures
(note that [0, T ] has measure one). With the corresponding expectation Eξ on Ξ, we
may write Eξ = EωEt, with Eω and Et denoting the expectations on ΩN and [0, T ]M ,
respectively. The standard Monte Carlo error estimate from Theorem 1 shows

Eξ(E2
1) = EωEt(E2

1) ≤
T 2

M
∥Eω

(
(·, ω) 7→ e−tc0f(X(ω, t, x))

)
∥2L2(Ω) ≤

T 2

M
∥f∥2L∞(Rd) (27)

as well as

Eξ(E2
3) = EtEω(E2

3) ≤ Et
( 1

N
∥ T
M

M∑
i=1

(
ω 7→ e−tic0f(Ri,ω(x))

)
∥2L2(Ω)

)
≤ T 2

N
∥f∥2L∞(Rd).

(28)

Standard estimates show

|E2| ≤ T max
i=1,...,M

∥f(X(·, ti, x))− f(Ri,·(x))∥L2(Ω)

≤ T∥f∥W 1,∞(Rd) max
i=1,...,M

∥X(·, ti, x)−Ri,·(x)∥L2(Ω).
(29)

Note that for x ∈ Bn(0), there holds dX(x) = −b0 dt+ dB and hence

E|X(t, x)|2 ≲ |x|2 + |
∫ t

0

b0 dt|2 + E|B(t)|2 ≤ n2 + t|b0|+ t.

This shows sup0≤t≤T E|X(t, x)|2 ≤ n2 + (1 + |b0|)T < ∞ and, with Lemma 80, shows√
Eω|X(ti, x)−Ri(x)|2 ≤ CeCT

√
τ . With (29), this implies√

Eξ(E2
2) =

√
Et|E2|2 ≤ C∥f∥W 1,∞(Rd)e

CT
√
τ . (30)

The combination of (27), (28), and (30) shows√
Eξ|uT (x)− U(x)|2 ≲

( T√
N

+
T√
M

)
∥f∥L∞(Rd) + CeCTT∥f∥W 1,∞(Rd)

√
τ .

Choosing N ≃M ≃ ε−2, T ≃ log(ε)/c0, and τ ≃ ε2+2(C/c0+1), we obtain√
Eξ|u(x)− U(x)|2 ≤ |u(x)− uT (x)|+

√
Eξ|u(x)− U(x)|2 ≤ ε.
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This implies

Eξ
(
∥u− U∥2L2(Bn(0))

)
=

∫
Bn(0)

Eξ|u(x)− U(x)|2 dx ≤ |Bn(0)|ε2.

Since we bound the expectation of the positive quantity ∥u − U∥2L2(Bn(0))
by |Bn(0)|ε2,

we know that there is at least one ξ ∈ Ξ with ∥u − U∥2L2(Bn(0))
≤ |Bn(0)|ε2. Note that

n ∈ N depends only on u and hence on f . We may estimate the volume of the ball by

|Bn(0)| =
(
√
πn)d

Γ(d/2 + 1)
≤ (πn2)⌊d/2⌋+1

⌊d/2⌋!
.

Since xj/j! → 0 as j → ∞ for all x ∈ R, we can bound |Bn(0)| ≤ C, where C > 0
depends on n but not on d.
It remains to show that U(x) = Uξ(x) can be represented by a neural network. By as-

sumption, f is a neural network and Ri,ωj
(·) are neural networks by Lemma 81. Lemma 71

shows that f ◦ Ri,ωj
(·) is a neural network and another application of Lemma 71 shows

that the weighted sum U(x) can be represented by a neural network with (note that
depth(b0) = 2 and width(b0) ≤ d)

depth(U) ≤ 2 + depth(f) + max
i=1,...M
j=1,...N

depth(Ri,ωj
) ≤ 2 + depth(f) + (2 + 2)Tτ−1 + 2

and

width(U) ≤ max{2d,
M∑
i=1

N∑
j=1

max{width(f),width(Ri,ωj
)}

≤ max{2d,
M∑
i=1

N∑
j=1

max{width(f), 2dim(b0) + 2d, 2}

≤ max{2d,NM max{width(f), 2d+ 2d, 2}}.

This concludes the proof. □

Remark 84. Note that the assumption that f is compactly supported and can exactly be
represented by a neural network is restrictive. While it is straightforward to construct a
not-trivial network f with compact support by

f(x1, . . . , xd) := 1−min{
d∑

i=1

|xi|, 1},

there might be some restrictions for more general right-hand sides. The proof of The-
orem 83 can be improved by including multiplication with a cut-off function into the
construction. This would remove the restriction of f being a neural network on the whole
of Rd and replace it with f being a neural network on Bn(0).

4.6. Convergence of gradient descent on a two-layer network. This section is
inspired by [4]. Consider the two layer network F : Rd → R defined by

F (W ,x) :=
1√
m

m∑
i=1

ϕ(wi · x),

with wi denoting the rows of W ∈ Rm×s. We consider the second layer as fixed and
only train the first layer W . The normalization 1√

m
is only for convenience in the proofs
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below. We consider the standard quadratic loss function

L(W ) :=
1

2

n∑
i=1

(F (W ,xi)− yi)
2

for given data x1, . . . ,xn and responses y1, . . . , yn. For simplicity, we assume |xi| = 1,
i = 1, . . . , n. We compute

∂wj
L(W ) =

1√
m

n∑
i=1

(F (W ,xi)− yi)xi1wj ·xi≥0. (31)

Define the vectors yi ∈ Rsm by

yi(W ) := (xi1w1·xi≥0, . . . ,xi1wm·xi≥0)

in order to write

∇WL(W ) =
1√
m

n∑
i=1

(F (W ,xi)− yi)yi(W ).

To simplify the proof, we have a number of assumptions that can be circumvented with
more careful analysis. First, we assume that the data is normalized (which is a pretty
common practice in applications), i.e., |xi| = 1. This allows allows us to avoid using a
bias in the network. Moreover, we will assume that the initial guess W 0 for the gradient
descent (Algorithm 4) is drawn from a uniform distribution on the sphere in Rs, i.e., each
row is drawn independently and we write W 0 ≃ Us. Note that such a sample can be

generated by first drawing W̃ 0 ∼ N (0, 1) ∈ Rs and setting W 0 := W̃ 0/|W̃ 0|. Finally,
we assume that no two vectors xi are parallel, i.e., xi /∈ {xj,−xj} for all i ̸= j. In this
section, we will prove the following result.

Theorem 85. Let W 0 ∼ Ud be the random initialization of the network F and let δ > 0.
For sufficiently large m ∈ N, there exists 0 < κ < 1 and a step-size α > 0 such that with
probability 1− δ, Algorithm 4 applied to L(W ) satisfies L(W ℓ) ≤ κℓL(W 0) for ℓ ∈ N.

Remark 86. Theorem 85 states the following: As long as the network F is sufficiently
wide, i.e., m ∈ N is large, there is a high probability such that gradient descent with initial
guess W 0 will find W with L(W ) arbitrarily small.
Note that this result is an extension of the universal approximation theorem (Theo-

rem 68), which only provides existence of W such that L(W ) is small. The result from
this section additionally shows that W can be found by applying gradient descent.

While all the other assumptions on the data can be weakened by more careful analysis,
and a similar proof works for deep networks, the assumption that m ∈ N is sufficiently
large is essential.

4.6.1. Random distribution on the unit sphere. We first prove a couple of results on
random vectors on the unit sphere. This is required since the initialization W 0 of the
gradient descent is chosen randomly.

Lemma 87. Let Sd :=
{
z ∈ Rd : |z| = 1

}
denote the unit sphere. For x ∈ Rd, let

C±(ε,x) :=
{
z ∈ Rd : |z| = 1, ±z · x ≥ ε

}
denote spherical caps and let E(ε,x) :=

Sd \ (C+(ε,x) ∪ C−(ε,x)) denote the equator. Then, there holds (with | · | for surface
area)

|Sd| =
2πd/2

Γ(d/2)
and |E(ε,x)| ≃ |Sd−1|ε.

65



Proof. Without loss of generality, we may assume x = (0, . . . , 0, 1) ∈ Rd. For z ∈ Rd, let
z′ := (z1, . . . ,zd−1, 0) ∈ Rd denote the first d − 1 coordinates. Let Rε := Sd−1 × [−ε, ε]
denote the cylinder with radius one and height 2ε. Define the map ϕ : Rε → Rd via
ϕ(z) := z/|z| = z/

√
1 + z2

d and compute

∂zi
ϕj(z) =


δij 1 ≤ i ≤ d− 1,

δjd

√
1+z2

d−
z2d√
1+z2

d

1+z2
d

= δjd(1 + z2
d)

−3/2 i = d.

Hence, we have detDϕ = (1 + z2
d)

−3/2. Moreover, there holds for all z ∈ E(ε,x) that

|z′|2 = 1− z2
d ≥ 1− ε2

and therefore z̃ := z/|z′| ∈ Rε/
√
1−ε2 as well as ϕ(z̃) = z. Hence, an integral transforma-

tion allows us to estimate

|E(ε,x)| =
∫
R

ε/
√

1−ε2

det(Dϕ) dz̃ ≃ |Rε/
√
1−ε2| ≃ ε|Sd−1|.

□

Lemma 88. For any choice of points x1, . . . ,xn ∈ Rd, there exists a signature σ ∈
{+,−}n such that ∣∣∣ n⋂

i=1

Cσi
(0,xi)

∣∣∣ ≥ |Sd|
2
∑d−1

j=0

(
n−1
j

) ,
where we define

(
n−1
j

)
= 0 for j ≥ n.

Remark 89. Note that this bound is much better than the naive bound obtained by the
fact that there are at most 2n different signatures.

Proof. Given a set of hyperplanes H1, . . . , Hn ∈ Rd, their union
⋃n

i=1Hi splits Rd into a
number of open cells Cj, j = 1, . . . ,m(n, d) ∈ N. Obviously, there holds m(n, 1) = 2 as
a one dimensional hyperplane is just {0} and m(1, d) = 2 since one hyperplane splits Rd

into two cells.
Assume n hyperplanes H1, . . . , Hn with cells Cj and add another hyperplane Hn+1. A

new cell is generated by splitting some Cj with Hn+1. In this case Cj ∩Hn+1 is a cell of
Hn+1 generated by H1, . . . , Hn. Hence, we have

m(n+ 1, d) ≤ m(n, d) +m(n, d− 1).

Since also

d−1∑
j=0

(
n

j

)
=

d−1∑
j=0

(
n− 1

j

)
+

d−2∑
j=0

(
n− 1

j

)
we see from induction that

m(n, d) ≤ 2
d−1∑
j=0

(
n− 1

j

)
(there even holds equality).
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To estimate the minimal area of an intersection of the form C :=
⋂n

i=1Cσi
(xi), define

the family

C :=
{ n⋂

i=1

Cσi
(xi) : (σi)

n
i=1 ∈ {−1, 1}n

}
.

Note that each C ∈ C is the intersection of some cell generated by {Hi :=
{
z ∈ Rd :

z · xi = 0
}
, i = 1, . . . , n} with Sd. Hence the sets C ∈ C are disjoint and their number

is bounded by #C ≤ m(n, d). Since Sd = Sd ∩
⋃

C∈C C, there exists at least one C with
|C| ≥ |Sd|/m(n, d). This concludes the proof. □

Lemma 90. Let x1, . . . ,xn ∈ Rd with |xi| = 1, i = 1, . . . , n such that no two xi are
parallel. Then, there exists ε > 0 and w± ∈ Sd such that for all w̃± ∈ Rd with |w± −
w̃±| ≤ ε, there holds

±w̃± · x1 > 0 and sign(w̃+ · xj) = sign(w̃− · xj) for all j = 2, . . . , n. (32)

For w± ∼ Ud ∈ Rd, the probability p of w± satisfying (32) is bounded from below by

p ≥ c
ε∑d−2

j=0

(
n−1
j

) ,
where c > 0 is independent of d, n, and the x1, . . . ,xn. The constant ε > 0 satisfies
ε ≃ min1≤i ̸=j≤n |xi − xj|2.

Proof. Consider H :=
{
z ∈ Rd : z ·x1 = 0

}
. Without loss of generality, we may assume

H = Rd−1 ×{0} and x1 = ed. We redefine Sd−1 := Sd−1 ×{0} as a subset of Rd−1 ×{0}.
See Figure 10 for a sketch of the proof strategy.

For xj ∈ Sd, let x′
j ∈ Rd−1 denote the first d − 1 dimensions and xj,d the last, i.e.,

xj = (x′
j, xj,d) . Since no two xi are parallel, there exists ε0 > 0 such that |x1 ±xj| ≥ ε0

for j > 1. With |x′
j|2 + |xj,d|2 = 1, there holds

ε20 ≤ |x′
j|2 + |xj,d ± 1|2 = 2± 2xj,d.

This implies |xj,d| ≤ 1− ε20/2 and therefore |x′
j| ≥ ε20/2. Recall the equator E(ε,xi) from

Lemma 87 and note that

E(ε,xj) ∩ Sd−1 =
{
z ∈ Sd−1 : |z · x′

j| ≤ ε
}
= Ed−1

( ε

|x′
j|
,
x′
j

|x′
j|

)
,

where Ed−1 denotes the equator of Sd−1. Lemma 87 shows consequently for the surface
measure on Sd−1 that

|
n⋃

j=1
i ̸=j

E(ε,xj) ∩ Sd−1| ≤ c0n|Sd−2|ε/ε20

for some constant c0 > 0. With Lemma 88 applied to Rd−1, we find some signature
σ ∈ {+,−}n, such that

V := Sd−1 ∩
n⋂

j=2

Cσj
(0,xj) \

n⋃
j=2

E(ε,xj)

which satisfies

|V | ≥ |Sd−1|
2
∑d−2

j=0

(
n−1
j

) − c0n|Sd−2|
ε

ε20
=

|Sd−1|
4
∑d−2

j=0

(
n−1
j

)
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Figure 10. The sphere depicts Sd and the north-pole is x1. The black
equator depicts Sd−1 and the green areas symbolize the union of the equa-
tors E(ε,xi), i = 2, . . . , n. The vectors w± must be close to Sd−1 in order
for ±w± ·x1 > 0. However, they can’t lie in the green areas, since w± ·xj

does not change sign for j = 2, . . . , n. In the proof of Theorem 90, we
first show that the intersection of Sd−1 with the complement of the green
areas has positive d− 1-dimensional surface measure (this is V ). Then, we
define the red areas above and below Sd−1 (those are V+ and V−) which are
sufficiently close to V .

for ε =
ε20|Sd−1|
nc0|Sd−2|

1

4
∑d−2

j=0 (
n−1
j )

.

Let z ∈ V and z̃ ∈ Sd with |z − z̃| < ε. Then, there holds for j > 1

|z̃ · xj| > |z · xj| − ε ≥ 0. (33)

This inspires the definition

V± :=
{
z ∈ Sd : dist(V, z) < ε/2, ±zd ≥ ε/4

}
.

Note that (33) implies for w ∈ V+ and w̃ ∈ Rd with |w − w̃| ≤ ε/2 and j > 1 that

|w̃ · xj| > 0 and therefore sign(w̃ · xj) = σj.

Moreover, there holds

w̃ · x1 = zd ≥ ε/4.

The analogous estimates hold for V− and hence all w± ∈ V± satisfy (32). Similarly to
Lemma 87, we may estimate |V±| ≳ |V |ε/4.

It remains to calculate the probability of randomly picking w ∼ Ud ∈ V+ (analogously
for V−). Since w ∼ N (0, 1), the normalization w/|w| is distributed uniformly on the
sphere. Therefore, the probability is given by |V+|/|Sd|. We conclude the proof with the
formula for |Sd| by

|Sd|
|Sd−1|

=

√
πΓ((d− 1)/2)

Γ(d/2)
≤

√
π.
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□

4.6.2. The gradient of L(W ). The following results will allow us to estimate the gradient
of the loss function.

Lemma 91. Given x1, . . . ,xn ∈ Sd such that no two xi are parallel, let w1, . . . ,wm ∼
Ud ∈ Rd be chosen randomly and let w̃1, . . . , w̃m ∈ Rd such that

|w̃i −wi| < ε for all i = 1, . . . ,m,

with ε > 0 from Lemma 90. Define the matrix X ∈ Rn×m via Xij := 1w̃j ·xi≥0 and
assume that no two xi are parallel. Given δ > 0, there exists m ∈ N such that the matrix
X has full rank with probability 1 − δ. The constant m grows polynomially in n and
logarithmically in δ.

Proof. For each xi, we apply Lemma 90 (with x1 = xi in the notation of Lemma 90) and
obtain wi,± with the properties (32). For |w̃j,± −wj,±| ≤ ε, this implies immediately

1w̃j,+·xi≥0 = 1w̃j,−·xi≥0 for all i ̸= j

and

1w̃i,+·xi≥0 ̸= 1w̃i,−·xi≥0.

If w1 = w1,+, w2 = w1,−, w3 = w2,+ and so on, this shows that the rows of X are
linearly independent.

Lemma 90 gives a lower bound on the probability 0 < p < 1 of randomly choosing a
vector wi with the above properties. Hence, given m random vectors w, the probability
of finding at least n vectors w1,w2, . . . ,wn with the above properties is given by the
binomial distribution and hence

P :=
m∑

j=n

(
m

j

)
pj(1− p)m−j.

Clearly, the probability tends to one if m→ ∞. A tail bound (Hoeffding’s inequality) on
the binomial distribution reveals

P =
m∑

j=n

(
m

j

)
pj(1− p)m−j ≥ 1− exp

(
− 2m

(
p− n

m

)2)
. (34)

With the lower bound on p from Lemma 90, we conclude that

m ≥ max{2n
∑d−2

j=0

(
n−1
j

)
cε

, | log(δ)|}

is sufficient for P ≥ 1− δ. This concludes the proof. □

In the following, we will consider the weight matrices W also as vectors and hence

|W | :=
√∑

i,j W
2
ij denotes the Frobenius norm.

Lemma 92. Given x1, . . . ,xn ∈ Sd such that no two xi are parallel. Let m ∈ N and
ε > 0 from Lemma 91. For m′ ∈ N, let w1, . . . ,wm′ ∼ Ud ∈ Rd and define

W :=

wT
1
...

wT
m′

 ∈ Rm′×d.

Let W̃ ∈ Rm′×d with |W − W̃ | ≤ C.
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If m′ ≳ m (the hidden constant depends only on d), the matrix Y ∈ Rn×n, Yjk :=

yj(W̃ ) · yk(W̃ ) with yj(W̃ )) from (31) is symmetric positive definite with probability
1− δ.

Proof. Since |W − W̃ |2 =
∑m′

j=1 |wj − w̃j|2 ≤ C2, there exist at least m′/2 indices
1 ≤ jk ≤ m′ such that

|wjk − w̃jk |2 ≤ 2C2/m′.

With m′ ≥ 2C2/ε2, me may restrict the yi := yi(W̃ )|j1,...,jm′ to the indices j1, . . . , jm′ and
prove linear independence of this subsystem which satisfies |wj − w̃j| ≤ ε for all j = jk,
k = 1, . . . ,m′. Assume that

∑n
i=1 αiyi = 0 for some α := (α1, . . . , αn) ∈ Rn. Then, there

holds with the matrix X ∈ Rn×m′
from Lemma 91 that

0 =
n∑

i=1

αi1w̃k·xi≥0xi = αTX:,k (35)

for all k = 1, . . . ,m′. This implies αTX = 0, and since X has full rank n with probability
1− δ, we have α = 0. Hence, Y is regular and symmetric and there holds

Yα ·α =
∣∣∣ n∑
i=1

αiy(W̃ )
∣∣∣2 > 0.

This concludes the proof. □

Corollary 93. Given x1, . . . ,xn ∈ Sd such that no two xi are parallel. Let W ∼ Ud

with |W − W̃ | ≤ C̃. For each m′ ∈ N and δ > 0, there exist m ≥ m′ such that with
probability 1− δ over W ∼ Ud, there holds

γm|α|2 ≤ Yα ·α ≤ ΓC̃ +mΓ|α|2

for all α ∈ Rn, where Y is the matrix from Lemma 92. The constants γ,Γ > 0 do not

depend on C̃ (ΓC̃ does depend on C̃) and all constants are independent of m.

Proof. Let mC ∈ N be minimal such that the statement of Lemma 92 is true for some

C ≥ 1. Observe that at most mC̃C̃
2 indices 1 ≤ jk ≤ m satisfy |wjk − w̃jk |2 ≥ 1/mC̃ .

Without loss of generality, assume that those are the first n0 := mC̃C̃
2 indices. We set

m = n0 + km1 for some k ∈ N and split the remaining indices into chunks of size m1,
i.e, j = n0 + rm1 + 1, . . . , n0 + (r + 1)m1 for 0 ≤ r < k. We may apply Lemma 92 to
the vectors wj, j = n0 + rm1 + 1, . . . , n0 + (r + 1)m1 and obtain corresponding matrices
Yr+1 ∈ Rn×n with Y0 denoting the matrix corresponding to the first n0 indices.
Finally, let Y denote the matrix corresponding to all indices j = 1, . . . ,m. Note that

Y =
∑k−1

r=0 Yr (because yi · yk = xi · xk

∑m
j=1 1w̃j ·xi

1w̃j ·xk
). For all r > 0, we can apply

Lemma 92 with C ≤ 1, since√√√√ n0+(r+1)m1∑
j=n0+rm1+1

|wjk − w̃jk |2 ≤ m1/mC̃ ≤ 1.

Moreover, withm1 and x1, . . . ,xn fixed, there are only finitely many possible matrices Yr,
r > 0. Hence, there holds max1≤r≤k ∥Yr∥2 ≤ Cmat independently of the choice of W and

W̃ . Moreover, Lemma 92 shows that each Yr is positive definite with probability 1− δ.
Again, the tail bound (25) for the binomial distribution shows that the probability P to
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have 0 < k′ := ⌊k(1− δ)/2⌋ < k positive definite matrices Yj1 , . . . , Yjk′ among Y1, . . . , Yk
is bounded by

P ≥ 1− exp
(
− 2k(1− δ − k′

k
)2
)
= 1− exp(−(1− δ)2k/2).

The minimal ellipticity constant among the positive definite Yr is bounded since there
are only finitely many different matrices, i.e.

min
1≤i≤k′

min
α∈Rn

Yjiα ·α ≥ cmat|α|2.

Hence, we have with probability 1− δ′ for k ≃ log(δ′) that

∥Y ∥2 ≤ ∥Y0∥2 +
k∑

r=1

∥Yk∥2 ≲ ∥Y0∥2 + k and Yα ·α = Y0α ·α+
k∑

r=1

Yrα ·α ≳ k|α|2

and the hidden constants do not depend on C̃ > 0 (Note that the norm of Y0 does depend

on C̃). This concludes the proof. □

Lemma 94. Given x1, . . . ,xn ∈ Sd such that no two xi are parallel, choose δ > 0.

Let W ∼ Ud ∈ Rm×d and assume |W − W̃ | ≤ C. There exists m ∈ N and constants
0 < q < Q < ∞ which depend only on the data x1, . . . ,xn, δ > 0, and d (but not on C)
such that

qL(W̃ ) ≤ |∇WL(W̃ )|2 ≤ QL(W̃ )

with probability at least 1− δ over the initialization W .

Proof. We obtain from (31)

|∇WL(W̃ )|2 = 1

m

∣∣∣ n∑
i=1

(F (W̃ ,xi)− yi)yi(W̃ )
∣∣∣2.

With the matrix Y from Corollary 93, this can be written as

|∇WL(W̃ )|2 = 1

m
Yα ·α,

where α ∈ Rn with αi := (F (W̃ ,xi)− yi). With probability 1− δ, Corollary 93 shows

1

m

∣∣∣ n∑
i=1

(F (W̃ ,xi)− yi)yi(W̃ )
∣∣∣2 ≤ ΓC +mΓ

m

n∑
i=1

(F (W̃ ,xi)− yi)
2

as well as

1

m

∣∣∣ n∑
i=1

(F (W̃ ,xi)− yi)yi(W̃ )
∣∣∣2 ≥ γ

n∑
i=1

(F (W̃ ,xi)− yi)
2

We also have
n∑

i=1

(F (W̃ ,xi)− yi)
2 = 2L(W̃ ).

Choosing m sufficiently large, we force ΓC/m ≤ 1 and conclude the proof. □

Lemma 95. Given x1, . . . ,xn ∈ Sd such that no two xi are parallel. Let W ∼ Ud ∈ Rm×d

and W̃ ∈ Rm×d with |W −W̃ | ≤ C. Then, given δ > 0, there exists ε0 > 0 such that for
all 0 < ε ≤ ε0, there holds with probability 1− δ that

|∇WL(W )−∇WL(W̃ )| ≤ Qn|W ||W − W̃ |+ ε
√

L(W ).
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as long as m ≳ C2ε−2n with Q > 0 being independent of n, m, C and ε.

Proof. Since |W −W̃ |2 =
∑m

j=1 |wj−w̃j|2 ≤ C2, there are at most C2/ε2 indices jk with

|wjk − w̃jk | ≥ ε. Recall from Lemma 87 that∣∣∣ n⋃
i=1

E(ε,xi)
∣∣∣ → 0

as ε→ ∞. Hence, we find ε > 0 such that with probability 1− δ, there holds 1wk·xi≥0 =
1w̃k·xi≥0 for all 1 ≤ k ≤ m and 1 ≤ i ≤ n with i ̸= jk. This implies

|yi(W )− yi(W̃ )| ≤ C2/ε2 for all i = 1, . . . , n.

Hence, we have

|∇WL(W )−∇WL(W̃ )| ≤ 1√
m

n∑
i=1

|F (W ,xi)− yi||yi(W )− yi(W̃ )|

+
1√
m

n∑
i=1

|F (W ,xi)− F (W̃ ,xi)||yi(W̃ )|

≤ 1√
m

( n∑
i=1

|F (W ,xi)− yi|2
)1/2( n∑

i=1

|yi(W )− yi(W̃ )|2
)1/2

+
1√
m

n∑
i=1

|F (W ,xi)− F (W̃ ,xi)||yi(W̃ )|

≲ m−1/2
√
L(W )

C2

ε2
√
n+m−1/2n|W ||W − W̃ | max

1≤i≤n
|yi(W̃ )|.

by using the Lipschitz continuity of F (exercise) in the last estimate. Choosing m ∈
N sufficiently large and the fact |yi(W̃ )| =

√∑m
j=1 1wj ·xi≥0|xi|2 ≤

√
m conclude the

proof. □

4.6.3. Proof of Theorem 85. With all the preliminary results in the previous sections, the
proof of the main result is rather short.

Proof. Recall q,Q from Lemma 94 and assume that the random initialization W 0 ∼ Us is
such that the estimates from Lemma 94 and Lemma 95 hold (for sufficiently large m ∈ N,
the probability of this is 1 − δ). Let W ℓ denote the iterations of Algorithm 4. As long
as |W ℓ −W 0| ≤ C (with C from Lemma 94 and Lemma 95), Lemma 94 and Lemma 95
show that the assumptions of Lemma 66 are satisfied and hence prove

Q−1|∇WL(W ℓ)|2 ≤ L(W ℓ) ≤ κℓL(W 0).

Note that the constants q,Q, ε from Lemma 94&95 are independent of C (only m grows
with C). Hence, also the constants α and κ from Lemma 66 are independent of C. By
definition of Algorithm 4, there holds |W ℓ+1 −W ℓ| ≤ α|∇WL(W ℓ)|, and we have

|W ℓ −W 0| ≤ α
√
QL(W 0)

1/2

∞∑
j=0

κℓ/2.

Thus, setting C :=
√
QL(W 0)

1/2
∑∞

j=0 κ
ℓ/2 <∞ concludes the proof. □
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Remark 96. Going through the proof, we notice that the main idea of is the following:
Gradient descent works as long as the gradient ∇WL(W ℓ) is sufficiently large. For
large m ∈ N, we show that the difference between ∇WL(W 0) and ∇WL(W ℓ) is small,
i.e., most of the weights do not change much during the application of gradient descent.
Essentially, if the the initial gradient is large enough (which happens with high probability),
all the other gradients will be large enough too.

5. High dimensional approximation: Sparse grids

To illustrate the idea, we first look at standard tensor interpolation: For a given set of
intervals T , let Q1(T ) denote the continuous functions which are affine on each interval
in T . Let Iℓ : C([0, 1]) → Q1(

{
[k2−ℓ, (k + 1)2−ℓ] : k = 0, . . . , 2ℓ − 1

}
) denote the nodal

interpolation operator in 1D, i.e.,

Iℓv(tk) = v(tk) for all tk = k2−ℓ, k = 0, . . . , 2ℓ.

We denote with Ixℓ that the interpolation operator is applied in dimension x. The ap-
proximation on the d-dimensional tensor mesh

T ⊗
ℓ :=

{ d∏
i=1

[ki2
−ℓ, (ki + 1)2−ℓ] : k1, . . . , kd ∈ {0, . . . , 2ℓ − 1}

}
is given for v ∈ C0([0, 1]d) by

(I⊗ℓ v)(x) := Ix1
ℓ (Ix2

ℓ . . . (Ixd
ℓ v) . . .)(x1, . . . , xd) ∈ Q1(T ⊗

ℓ ),

where

Q1(T ⊗
ℓ ) :=

{
v ∈ C0([0, 1]d) : ∀1 ≤ i ≤ d, (xi 7→ v(x))|T is a polynomial of degree ≤ 1

}
.

Similarly to the proof of the approximation theorem for the standard nodal interpola-
tion operator, one can show

∥v − I⊗ℓ v∥L∞([0,1]d) ≤ C2−ℓ∥v∥C1([0,1]d)

for v ∈ C1([0, 1]d). As we see, the computation of I⊗ℓ v requires the evaluation of 2dℓ

points in [0, 1]d and hence is impractical for many purposes (if d = 100, and ℓ = 1, we
would need 2100 points).

The sparse grid idea is as follows: With the definition I−1 = 0, we may rewrite

(I⊗ℓ v)(x) =
ℓ∑

ℓ1=0

(Ix1
ℓ1

− Ix1
ℓ1−1)(I

x2
ℓ . . . (Ixd

ℓ v) . . .)(x1, . . . , xd)

=
ℓ∑

ℓ1=0

ℓ∑
ℓ2=0

(Ix1
ℓ1

− Ix1
ℓ1−1)(I

x2
ℓ2

− Ix2
ℓ2−1)(I

x3
ℓ . . . (Ixd

ℓ v) . . .)(x1, . . . , xd)

=
∑

ℓ=(ℓ1,...,ℓd)∈{0,...,ℓ}d
(Ix1

ℓ1
− Ix1

ℓ1−1)(I
x2
ℓ2

− Ix2
ℓ2−1) . . . (I

xd
ℓd

− Ixd
ℓd−1)︸ ︷︷ ︸

=:∆ℓ

(v)(x).

Lemma 97. For a subset u ⊆ {1, . . . , d} let ∂xu :=
∏

i∈u ∂xi
denote the partial derivatives

in all directions in u. For sufficiently smooth v ∈ C0([0, 1]d), there holds

∥∆ℓv∥H1([0,1]d) ≤ 4d2−|ℓ|∥∂xuv∥H1([0,1]d),

where |ℓ| := ℓ1 + . . .+ ℓd and u ⊆ {1, . . . , d} contains each dimension i with ℓi > 0.
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Figure 11. The different sparse grid contributions on the left stacked on
top of each other combine to the full grid on the right. The interpolation
operator Iℓ = Ix1

ℓ1
Ix2
ℓ2

corresponds to one of the grids on the left-hand side
(e.g., grid number 1 for ℓ = (1, 2) or grid number 5 for ℓ = (3, 1)).
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Figure 12. The circles represent the number of degrees of freedom of Iℓ in
each coordinate direction. The sparse grid approach only uses interpolation
operators which correspond to circles below the dashed line. This shape is
the upper right quadrant of the so-called hyperbolic cross.

Proof. Let x0 = (x0,1, . . . , x0,d) ∈ [0, 1]d and i ∈ {1, . . . , d}. Choose k ∈ N such that
|k2−ℓ−x0,i| is minimal. Without loss of generality, we assume x0,i ≥ k2−ℓ (the other case
works analogously). Rolle’s theorem implies that there exists ξ ∈ (k2−ℓ, (k + 1)2−ℓ) with

∂xi
(1− Ixi

ℓ )v(x0,1, . . . , x0,i−1, ξ, x0,i+1, . . . , x0,d) = 0.
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With this, there holds

(1− Ixi
ℓ )v(x0) =

∫ x0,i

k2−ℓ

∂xi
(1− Ixi

ℓ )v(x0,1, . . . , x0,i−1, z, x0,i+1, . . . , x0,d) dz

=

∫ x0,i

k2−ℓ

∫ z

ξ

∂2xi
v(x0,1, . . . , x0,i−1, t, x0,i+1, . . . , x0,d) dt dz

≤ |(k + 1)2−ℓ − k2−ℓ|3/2∥∂2xi
v(x0,1, . . . , x0,i−1, ·, x0,i+1, . . . , x0,d)∥L2([k2−ℓ,(k+1)2−ℓ])

≤ 2−ℓ∥∂2xi
v(x0,1, . . . , x0,i−1, ·, x0,i+1, . . . , x0,d)∥L2([k2−ℓ,(k+1)2−ℓ]).

We define

Ωk := ⊗i−1
j=1[0, 1]× [k2−ℓ, (k + 1)2−ℓ]×⊗d

j=i+1[0, 1].

This results in

∥(1− Ixi
ℓ )v∥2L2(Ωk)

≤ 2−3ℓ

∫
Ωk

∥∂2xi
v(x0,1, . . . , x0,i−1, ·, x0,i+1, . . . , x0,d∥2L2(Ωk)

dx0

≤ 2−4ℓ∥∂2xi
v∥2L2(Ωk)

.

Since [0, 1]d =
⋃̇2ℓ−1

k=0 Ωk, we obtain

∥(1− Ixi
ℓ )v∥L2([0,1]d) ≤ 2−2ℓ∥∂2xi

v∥L2([0,1]d).

Analogously, we show

∥∇(1− Ixi
ℓ )v∥L2([0,1]d) ≤ 2−ℓ∥∂xi

v∥H1([0,1]d).

The triangle inequality concludes

∥(Ixi
ℓ − Ixi

ℓ−1)v∥H1([0,1]d) ≤ ∥(1− Ixi
ℓ−1)v∥H1([0,1]d) + ∥(1− Ixi

ℓ )v∥H1([0,1]d)

≤ 2−(ℓ−1)∥∂xi
v∥H1([0,1]d) + 2−ℓ∥∂xi

v∥H1([0,1]d)

≤ 2−ℓ+2∥∂2xi
v∥L2([0,1]d).

Assume that ℓi > 0 for all 1 ≤ i ≤ d. Iteration of this result in all dimension shows

∥∇(Ix1
ℓ1

− Ix1
ℓ1−1) . . . (I

x1
ℓd

− Ixd
ℓd−1)v∥L2([0,1]d) ≤ 2−ℓ1+2∥∂2x1

∇x2,...,xd
(Ix2

ℓ2
− Ix2

ℓ2−1) . . . (I
xd
ℓd

− Ixd
ℓd−1)v∥L2([0,1]d)

= 2−ℓ1+2∥∇x2,...,xd
(Ix2

ℓ2
− Ix2

ℓ2−1) . . . (I
xd
ℓd

− Ixd
ℓd−1)∂

2
x1
v∥L2([0,1]d)

. . .

≤ 4d2−ℓ1−...−ℓd∥∂2x1
∂2x2

. . . ∂2xd
v∥L2([0,1]d).

The proof for the L2-norm works analogously. If some of the ℓi are zero, we just skip
those dimensions in the proof and obtain the stated result. □

With the last result to obtain an error of 2−ℓ, we may ignore all ∆ℓ with |ℓ| > ℓ. This
leads to the sparse grid interpolation operator Idℓ defined by

Idℓ v :=
∑

ℓ∈{0,...,ℓ}d
|ℓ|≤ℓ

∆ℓv. (36)

This truncation is illustrated in Figures 11–12. To analyze the error, we need the following
nice combinatorial identity.

Lemma 98. There holds

#
{
ℓ ∈ Nd

0 : |ℓ| = j
}
=

(
j + d− 1

d− 1

)
.
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Proof. There are many proofs of this identity. A nice one goes like this: Imagine the
index ℓ ∈ Nd

0 as

1 . . . 1︸ ︷︷ ︸
ℓ1

| 1 . . . 1︸ ︷︷ ︸
ℓ2

| . . . . . . | 1 . . . 1︸ ︷︷ ︸
ℓd

This line contains the |ℓ|+ d− 1 symbols z ∈ {1, |}. Exactly d− 1 of the symbols z must
satisfy z = |. Hence there are

(
j+d−1
d−1

)
possibilities. □

Theorem 99. The sparse grid interpolation error satisfies

∥(1− Idℓ )v∥H1([0,1]d) ≤ C4d(ℓ+ d)d−12−ℓ|v|H2
mix([0,1]

d),

where

|v|H2
mix([0,1]

d) := max
u⊆{1,...,d}

∥∂2xu
v∥L2([0,1]d).

Proof. Given v ∈ H2
mix([0, 1]

d) we may formally write

v =
∑
ℓ∈Nd

0

∆ℓv.

As shown in Lemma 97, we have

∥∆ℓv∥H1([0,1]d) ≤ 4d2−|ℓ|∥v∥H2
mix([0,1]

d).

This implies that the series above converges absolutely and hence we may write the
approximation error as

v − Idℓ v =
∑
ℓ∈Nd0
|ℓ|>ℓ

∆ℓv.

Altogether, we have

∥v − Idℓ v∥H1([0,1]d) ≤
∑
ℓ∈Nd0
|ℓ|>ℓ

∥∆ℓv∥H1([0,1]d) ≤ 4d∥v∥H2
mix([0,1]

d)

∑
ℓ∈Nd0
|ℓ|>ℓ

2−|ℓ|.

The sum can be rewritten as∑
ℓ∈Nd0
|ℓ|>ℓ

2−|ℓ| =
∞∑

j=ℓ+1

2−j
∑
ℓ∈Nd0
|ℓ|=j

1 =
∞∑

j=ℓ+1

2−j

(
j + d− 1

d− 1

)
,

where we used Lemma 98 for the last identity. There holds for x ∈ (0, 1)

∞∑
j=ℓ+1

xj
(
j + d− 1

d− 1

)
= ∂d−1

x

∞∑
j=ℓ+1

xj+d−1/(d− 1)! = ∂d−1
x

xℓ+d

1− x
/(d− 1)!

=
d−1∑
k=0

(
d− 1

k

)
∂kxx

ℓ+d∂d−1−k
x (1− x)−1/(d− 1)!
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since the series converges absolutely. There holds(
d− 1

k

)
∂kxx

ℓ+d∂d−1−k
x (1− x)−1/(d− 1)!

=
(d− 1)(d− 2) · · · (d− k)

k!(d− 1)!

(
(ℓ+ d) · · · (ℓ+ d− k + 1)

)
(d− 1− k)!

xℓ+d−k

(1− x)d−k

=
1

k!

(
(ℓ+ d) · · · (ℓ+ d− k + 1)

) xℓ+d−k

(1− x)d−k
≤ (ℓ+ d)d−1

k!

xℓ+d−k

(1− x)d−k
.

Inserting x = 1/2, we end up with
∞∑

j=ℓ+1

2−j

(
j + d− 1

d− 1

)
≲ (ℓ+ d)d−12−ℓ.

This concludes the proof. □

The representation in (36) is not really good for implementation due to cancelation
effects and the requirement to constantly transform coefficient vectors between different
meshes. A better variant is provided by the inclusion-exclusion formula which is an
interesting combinatorial fact in it self.

Lemma 100. For d ∈ N and r ≤ d, the binomial coefficient satisfies the identity
r∑

q=0

(−1)q
(
d

q

)
= (−1)r

(
d− 1

r

)
.

Proof. The proof works by induction. For r = 0, there holds
(
d
0

)
=

(
d−1
0

)
= 1. Assume

the statement holds for r < d. Then, we have
r+1∑
q=0

(−1)q
(
d

q

)
= (−1)r+1

(
d

r + 1

)
+

r∑
q=0

(−1)q
(
d

q

)
= (−1)r+1

(( d

r + 1

)
−
(
d− 1

r

))
.

The well-known identity (
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
with n = d− 1 and k = r concludes the proof. □

Lemma 101. With Iℓ := Ix1
ℓ1
Ix2
ℓ2
. . . Ixd

ℓd
for ℓ ∈ Nd

0, there holds

Idℓ =
d∑

k=0

(−1)k
(
d− 1

k

) ∑
ℓ∈Nd0

|ℓ|=ℓ−k

Iℓ.

Proof. We rewrite (36) by

Idℓ =
∑
ℓ∈Nd0
|ℓ|≤ℓ

∆ℓ =
∑
ℓ′∈Nd0
|ℓ′|≤ℓ

αℓ′Iℓ′ (37)

for some αℓ ∈ R. Given the definition

∆ℓ = (Ix1
ℓ1

− Ix1
ℓ1−1)(I

x2
ℓ2

− Ix2
ℓ2−1) . . . (I

xd
ℓd

− Ixd
ℓd−1)

we note that a particular Iℓ′ appears in (37) if and only if there exists ℓ ∈ Nd
0 with

|ℓ| ≤ ℓ and ℓ′i ≤ ℓi ≤ ℓ′i + 1 for all i = 1, . . . , d. (38)
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Moreover, the sign of that Iℓ′ is determined by the parity (odd or even) of the number of
dimensions i with ℓi = ℓ′i + 1. For q = 0, . . . , d, let

Pq(ℓ
′) :=

{
ℓ ∈ Nd

0 : ℓ satisfies (38) and ℓik = ℓ′ik + 1, k = 1, . . . , q
}
.

Then, we observe Pq(ℓ
′) = ∅ if |ℓ′| > |ℓ| − q. Moreover, since for each choice of q indices

ik we have an element of Pq(ℓ
′), there holds

#Pq(ℓ
′) =

(
d

q

)
.

This implies

αℓ′ =
d∑

q=0

(−1)q#Pq(ℓ
′) =

ℓ−|ℓ′|∑
q=0

(−1)q#Pq(ℓ
′) =

ℓ−|ℓ′|∑
q=0

(−1)q
(
d

q

)
.

Lemma 100 shows for r = ℓ− |ℓ′| ≤ d

ℓ−|ℓ′|∑
q=0

(−1)q
(
d

q

)
= (−1)ℓ−|ℓ′|

(
d− 1

ℓ− |ℓ′|

)
.

Altogether, we see with k = ℓ− |ℓ′|

Idℓ =
d∑

k=0

(−1)k
(
d− 1

k

) ∑
ℓ′∈Nd0

|ℓ′|=ℓ−k

Iℓ′ .

This concludes the proof. □

Lemma 102. The number of evaluations of v required for the computation of Idℓ v is less
than

d

(
ℓ+ d− 1

d− 1

)
2ℓ ≤ d(ℓ+ d)d−12ℓ.

Proof. We use the representation from Lemma 101. Each Iℓv requires 2|ℓ| evaluations of
v for computation. Lemma 98 concludes the proof. □

The last result together with Theorem 99 shows the following: A sparse grid of size
h > 0 (this means 2−ℓ = h) allows an interpolation error of

∥(1− Idℓ )v∥H1([0,1]d) ≲ (1 + | log(h)|)αh

for some exponent α ∈ N with a cost of computation of Idℓ v less than

O
(
(1 + | log(h)|)αh−1

)
.

This means that the error estimate with respect to cost reads

∥(1− Idℓ )v∥H1([0,1]d) ≲ cost−1

(up to logarithmic factors). The convergence rate is independent of the dimension.
Instead of the sparse interpolation operator, we may also consider the sparse Galerkin

projection. Define the (quad-)mesh

T ⊗
ℓ :=

{ d∏
i=1

[ki2
−ℓi , (ki + 1)2−ℓi ] : ki ∈ {0, . . . , 2ℓi − 1}, i = 1, . . . , d

}
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for ℓ = (ℓ1, . . . , ℓd) ∈ Nd
0. Note that we don’t have a triangle mesh any more. However,

the abstract theory just used the fact that

Xℓ =
⊕
ℓ∈Nd0
|ℓ|≤ℓ

Q1(T ⊗
ℓ )

is a closed subspace of H1([0, 1]d). Hence, we may apply all the results of the previous
sections.

Theorem 103. We consider

−∆u = f in [0, 1]d,

u = 0 on ∂[0, 1]d.

Assume that u ∈ H2
mix([0, 1]

d) and let uℓ ∈ Xℓ denote the unique Galerkin approximation.
Then, there holds

∥u− uℓ∥H1([0,1]d) ≤ C4d(ℓ+ d)d−12−ℓ∥u∥H2
mix([0,1]

d).

Proof. Note that Iℓu ∈ Q1(T ⊗
ℓ ) by definition. This implies that Idℓ u ∈ Xℓ. Thus, the Céa

Lemma and Theorem 99 show the statement. □

Analogously to the proof of Lemma 102, we obtain that

dimXℓ ≲ d(ℓ+ d)d−12ℓ.

There are many examples of high-dimensional PDEs in practical applications such
as finance, physics, and chemistry. One notable example is the Schrödinger eigenvalue
problem: Given n ∈ N electrons andm ∈ N nuclei, the goal is to to find the wave function
ψ : R3n → C which gives a probability density of the position xi ∈ R3 of the i-th electron.
The wave function is a solution of the problem

−1

2

n∑
i=1

3∑
j=1

∂2xi
ψ(x1, . . . , xn)︸ ︷︷ ︸

Laplace in every dimension xi

+
(

−
n∑

i=1

m∑
j=1

Zj

|xi −Rj|2︸ ︷︷ ︸
force between electrons and nuclei

+
n∑

i=1

n∑
j=i+1

1

|xi − xj|2︸ ︷︷ ︸
force between electrons

)
ψ(x1, . . . , xn)

= Eψ(x1, . . . , xn).

The position of the nuclei of the atoms is given by Rj ∈ R3 and Zj is the charge of the
j-th nucleus. Finally, E ∈ C is the eigenvalue of the wave-function ψ. The first part of
the operator (the Laplacian) is often abbreviated with T and the remaining part with V .
This allows us to write the equation as

(T + V )ψ = Eψ.

We do not yet know how to solve eigenvalue problems, however in the simplified setting

(T + V )ψ = f

for some right-hand side f and Zj < 0 for all j = 1, . . . ,m, we can derive a weak
formulation analogously to the previous chapters. (Note that a negative charge is not
physical for a nucleous, however, for Zj > 0 one needs Fredholm theory not covered in
this lecture to show well-posedness of the weak form.) This results in a problem with
d = 3n and hence standard FEM is out of the question even for a moderate number of
electrons.
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